print template.render(title = key, kvps = data[key]) def compare(old,new): mod = old if len(old) is not len(new): temp = new.keys() for key in old.keys(): temp.pop(temp.index(key)) print("The following blocks are missing in your config.\n Please select an option for changing the configuratoin to the optimal value. [Y/n]") print(temp) dec = str(raw_input()) if __name__ == "__main__": global data parser = argparse.ArgumentParser(description = "Accepts addresses of config file") parser.add_argument("--path1",dest = "path1") parser.add_argument("--path2",dest = "path2") paths = parser.parse_args() if paths.path1 is None or paths.path2 is None: print("Paths incomplete") sys.exit() if not os.path.exists(paths.path1) or not os.path.exists(paths.path2): print("Files do not exist.") sys.exit() data1 = test_parser.parse(paths.path1)#"/home/akarsh/Documents/tmp/config2.conf") data2 = test_parser.parse(paths.path2)#"/home/akarsh/Documents/git/NetApp-PESIT-Configuration-Validation-Tool/output/output.conf") render_template(data1) print data1 == data2
sys.exit(1) else: path = argv.pop(0) debug_testno = [-1] breakAt = -1 while argv: arg = argv.pop(0) if arg == '-b': if argv: breakAt = int(argv.pop(0)) else: breakAt = 1 elif arg == '-l': debug_testno = argv[1:] else: raise Exception('unknown flag') server, tests = parse(path) tlength = len(tests) print print 'Executing %d tests using %s' % (tlength, server) completed = 0 for i, test in enumerate(tests): i += 1 print '-'*80 debug = True if str(i) in debug_testno or '*' in debug_testno else False if debug: print
print("\n # Processing...") parser(dataset_path) print("\n # output.csv created\n") print(" # Training...") x = dataset_path + '/output.csv' func(x) print("\n # Train finished\n") # python3 train.py ./data/consumer_complaints.csv.zip ./parameters.json elif menu_choice == '2': print(" ------------ ------------") print(" Choose classification method (default SVC)\n") print(" 1. Multinomial Naive Bayes") print(" 2. Linear Support Vector Clusters") print(" 3. Support Vector Clusters with ratio \n") classification_choice = input(" Enter an input: ") print(" Enter the path for folder (ex. format = ./dataset )") document_path = input(" Enter an input: ") parse(document_path) print("# Classifying...") predict('./test_output.csv', classification_choice) elif menu_choice == '0': break else: print("\n")