Exemplo n.º 1
0
 def reset(self, params, rep):
     if params['name'].startswith("content"):
         cfg = Config()
         # if the index was not built yet
         # app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi")
         cfg.axi = "data/AppAxi"
         cfg.index_mode = "old"
         cfg.weight = params['weight']
         self.rec = Recommender(cfg)
         self.rec.set_strategy(params['strategy'])
         self.repo_size = self.rec.items_repository.get_doccount()
         self.user = LocalSystem()
         self.user.app_pkg_profile(self.rec.items_repository)
         self.user.no_auto_pkg_profile()
         self.sample_size = int(
             len(self.user.pkg_profile) * params['sample'])
Exemplo n.º 2
0
    def get_user(self, no_auto_pkg_profile):
        config = Config()

        user = LocalSystem()
        user.filter_pkg_profile(
            os.path.join(config.filters_dir, "desktopapps"))
        user.maximal_pkg_profile()

        if no_auto_pkg_profile:
            user.no_auto_pkg_profile()

        return user
Exemplo n.º 3
0
 def reset(self, params, rep):
     if params['name'].startswith("content"):
         cfg = Config()
         #if the index was not built yet
         #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi")
         cfg.axi = "data/AppAxi"
         cfg.index_mode = "old"
         cfg.weight = params['weight']
         self.rec = Recommender(cfg)
         self.rec.set_strategy(params['strategy'])
         self.repo_size = self.rec.items_repository.get_doccount()
         self.user = LocalSystem()
         self.user.app_pkg_profile(self.rec.items_repository)
         self.user.no_auto_pkg_profile()
         self.sample_size = int(len(self.user.pkg_profile)*params['sample'])
Exemplo n.º 4
0
"""

import os
import sys
sys.path.insert(0,'../')
import logging
import random
import datetime

from config import Config
from recommender import Recommender
from user import LocalSystem, RandomPopcon

if __name__ == '__main__':
    begin_time = datetime.datetime.now()
    cfg = Config()
    rec = Recommender(cfg)
    logging.info("Computation started at %s" % begin_time)
    #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps"))
    user = LocalSystem()
    user.filter_pkg_profile(os.path.join(cfg.filters_dir,"desktopapps"))
    user.maximal_pkg_profile()

    logging.info("Recommending applications for user %s" % user.user_id)
    logging.info(rec.get_recommendation(user,20))

    end_time = datetime.datetime.now()
    logging.info("Computation completed at %s" % end_time)
    delta = end_time - begin_time
    logging.info("Time elapsed: %d seconds." % delta.seconds)
Exemplo n.º 5
0
class ContentBasedSuite(expsuite.PyExperimentSuite):

    def reset(self, params, rep):
        if params['name'].startswith("content"):
            cfg = Config()
            # if the index was not built yet
            # app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi")
            cfg.axi = "data/AppAxi"
            cfg.index_mode = "old"
            cfg.weight = params['weight']
            self.rec = Recommender(cfg)
            self.rec.set_strategy(params['strategy'])
            self.repo_size = self.rec.items_repository.get_doccount()
            self.user = LocalSystem()
            self.user.app_pkg_profile(self.rec.items_repository)
            self.user.no_auto_pkg_profile()
            self.sample_size = int(
                len(self.user.pkg_profile) * params['sample'])
            # iteration should be set to 10 in config file
            # self.profile_size = range(10,101,10)

    def iterate(self, params, rep, n):
        if params['name'].startswith("content"):
            item_score = dict.fromkeys(self.user.pkg_profile, 1)
            # Prepare partition
            sample = {}
            for i in range(self.sample_size):
                key = random.choice(item_score.keys())
                sample[key] = item_score.pop(key)
            # Get full recommendation
            user = User(item_score)
            recommendation = self.rec.get_recommendation(user, self.repo_size)
            # Write recall log
            recall_file = "results/content/recall/%s-%s-%.2f-%d" % \
                          (params['strategy'], params[
                           'weight'], params['sample'], n)
            output = open(recall_file, 'w')
            output.write("# weight=%s\n" % params['weight'])
            output.write("# strategy=%s\n" % params['strategy'])
            output.write("# sample=%f\n" % params['sample'])
            output.write("\n%d %d %d\n" %
                         (self.repo_size, len(item_score), self.sample_size))
            notfound = []
            ranks = []
            for pkg in sample.keys():
                if pkg in recommendation.ranking:
                    ranks.append(recommendation.ranking.index(pkg))
                else:
                    notfound.append(pkg)
            for r in sorted(ranks):
                output.write(str(r) + "\n")
            if notfound:
                output.write("Out of recommendation:\n")
                for pkg in notfound:
                    output.write(pkg + "\n")
            output.close()
            # Plot metrics summary
            accuracy = []
            precision = []
            recall = []
            f1 = []
            g = Gnuplot.Gnuplot()
            g('set style data lines')
            g.xlabel('Recommendation size')
            for size in range(1, len(recommendation.ranking) + 1, 100):
                predicted = RecommendationResult(
                    dict.fromkeys(recommendation.ranking[:size], 1))
                real = RecommendationResult(sample)
                evaluation = Evaluation(predicted, real, self.repo_size)
                accuracy.append([size, evaluation.run(Accuracy())])
                precision.append([size, evaluation.run(Precision())])
                recall.append([size, evaluation.run(Recall())])
                f1.append([size, evaluation.run(F1())])
            g.plot(Gnuplot.Data(accuracy, title="Accuracy"),
                   Gnuplot.Data(precision, title="Precision"),
                   Gnuplot.Data(recall, title="Recall"),
                   Gnuplot.Data(f1, title="F1"))
            g.hardcopy(recall_file + "-plot.ps", enhanced=1, color=1)
            # Iteration log
            result = {'iteration': n,
                      'weight': params['weight'],
                      'strategy': params['strategy'],
                      'accuracy': accuracy[20],
                      'precision': precision[20],
                      'recall:': recall[20],
                      'f1': f1[20]}
            return result