def main(): recsys = MovieRecommender().Instance() #print ml.get_DBpedia_mapped_movie_list() #print ml.get_avg_movie_rating_by_dbpedia_uri('http://dbpedia.org/resource/Roman_Holiday') #print ml.get_avg_movie_rating_by_dbpedia_uri('http://dbpedia.org/resource/Wag_the_Dog') #r_list = recsys.get_movie_recommendations('http://dbpedia.org/resource/Wag_the_Dog') user_id = '100' (rated_movies,r_list) = recsys.recommendation_for_user(user_id) #print r_list print "Recommedations for the user:"******"|explanation:",dbp_id print util.url_unquote(movie_uri), confidence, "|explanation:",util.url_unquote(dbp_id) except Exception, e: print "----------ERROR--------" print movie_uri, dbp_id break
from SPARQLWrapper import SPARQLWrapper, JSON import util sparql = SPARQLWrapper("http://dbpedia-test.inria.fr/sparql") queryStr = """ SELECT ?m count(?m) AS ?num WHERE { <http://dbpedia.org/resource/Catch_Me_If_You_Can> dcterms:subject ?o. ?m dcterms:subject ?o. ?m a dbpedia-owl:Film. FILTER (?m != <http://dbpedia.org/resource/Catch_Me_If_You_Can>) } GROUP BY ?m ORDER BY DESC(?num) LIMIT 50 """; sparql.setQuery(queryStr) sparql.setReturnFormat(JSON) results = sparql.query().convert() for result in results["results"]["bindings"]: print util.url_unquote(result["m"]["value"]), result["num"]["value"] #print result["m"]["value"], result["num"]["value"]