Exemplo n.º 1
0
        ogle = synthetic_data.CadenceFromSurvey(
            database_location='../db/ogle_cadences.db')
        cadence_dict = {'hip': hip, 'ogle': ogle}
        period = 25
        number_points = 4000

        ## make a curve
        number_tfe = 60
        power = 10
        tfe = np.ndarray(number_tfe * 3).reshape((number_tfe, 3))
        tfe[:, 0] = np.linspace(.01, .99, number_tfe)
        tfe[:, 1] = np.abs(tfe[:, 0]) - pow(tfe[:, 0], power)
        print tfe

        ## examine noisification
        for i in range(1):
            tfe2 = cadence_noisify_smoothed(
                tfe, ['ogle', 'first', number_points, period, cadence_dict])
        print tfe2
        visualize.plot_curve(tfe2, period=period)

    if 0:
        randoms = np.random.normal(size=(10, 3))
        randoms_out = cadence_noisify(randoms, [5, 'first', 6])
        print randoms_out
        print randoms

    if 0:
        noisification_dict = get_noisification_dict()
        print noisification_dict
Exemplo n.º 2
0
        (times[:, np.newaxis], fluxes[:, np.newaxis], errors[:, np.newaxis]))
    return tfe


## light curve now in aRRLyraeFund.curve_this
aRRLyraeFund = synthetic_data.RRLyraeFund()
aRRLyraeFund.generateCurve()

## put cadence in aCadence
filename = "../data/OGLEIII/classical-cepheid/OGLE-LMC-CEP-2233.dat"
aCadence = synthetic_data.CadenceFromTFE()
aCadence.generate_cadence(fname=filename)

## check that this worked
tfe = ComputeTfe(aRRLyraeFund, aCadence)
visualize.plot_curve(tfe, period=aRRLyraeFund.period_this)

## parameters for entering tfes into database
source_class = "rr lyrae"
survey = "full"
points_per_curve = len(aCadence.error_this)
period = aRRLyraeFund.period_this
curve_info = [
    points_per_curve, source_class, 0, 0, 0, 0, None, survey, 0, period
]
curve_info_names = [
    "number_points", "classification", "c1", "e1", "c2", "e2", "raw_xml",
    "survey", "xml_filename", "true_period"
]

## generate light curve using full cadence
Exemplo n.º 3
0
# make a nice view of the features table
sql_cmd = """CREATE VIEW IF NOT EXISTS sources_short AS SELECT source_id,original_source_id,classification,noisification,noise_args,true_period FROM sources"""
cursor.execute(sql_cmd)



# set up the survey and
# create two curves and visualize them
aSurvey = synthetic_data.surveySetup()
aCadence = synthetic_data.CadenceFromVOSource()
aSurvey.aCadence = aCadence
aSurvey.generateCurve()
tfe = np.column_stack((aSurvey.times[:,np.newaxis],
		       aSurvey.fluxes[:,np.newaxis],
		       aSurvey.errors[:,np.newaxis]))
visualize.plot_curve(tfe,period= (2*aSurvey.period_this))




# generate training data, add to db
survey='normal'
for i in range(1000):
	aSurvey.generateCurve()
	tfe = np.column_stack((aSurvey.times[:,np.newaxis],aSurvey.fluxes[:,np.newaxis],aSurvey.errors[:,np.newaxis]))
	points_per_curve = len(aSurvey.times)
	source_class = aSurvey.class_name
	period = aSurvey.period_this
	curve_info = [points_per_curve,source_class,0,0,0,0,None,survey,0,period]
	curve_info_names = ["number_points","classification","c1","e1","c2","e2","raw_xml","survey","xml_filename","true_period"]
	print source_class
Exemplo n.º 4
0
connection.commit()






########### VISUALIZE SMOOTHED CURVES ###########
## does this work out okay?
## run several times and use evince to view both at once
which = np.random.randint(low=0,high=len(db_info))
reload(visualize)

tfe = create_database.get_measurements(db_info[which][0],cursor)
visualize.plot_curve(tfe,1/db_info[which][4],classification=db_info[which][2],survey=db_info[which][3],show_plot=False,save_figure=True,save_figure_name='original_plot.pdf')

tfe = create_database.get_measurements(db_info[which][0],cursor,table='measurements_smoothed')
visualize.plot_curve(tfe,1/db_info[which][4],classification=db_info[which][2],survey=db_info[which][3],show_plot=False,save_figure=True,save_figure_name='smoothed_plot.pdf')





######
###### ADD ENTRIES IN SOURCES FOR NOISIFIED VERSIONS
######

reload(create_database)
sql_cmd = """DELETE from sources WHERE source_id != original_source_id"""
cursor.execute(sql_cmd)


## light curve now in aRRLyraeFund.curve_this
aRRLyraeFund = synthetic_data.RRLyraeFund()
aRRLyraeFund.generateCurve()

## put cadence in aCadence
filename = "../data/OGLEIII/classical-cepheid/OGLE-LMC-CEP-2233.dat"
aCadence = synthetic_data.CadenceFromTFE()
aCadence.generate_cadence(fname=filename)


## check that this worked
tfe = ComputeTfe(aRRLyraeFund,aCadence)
visualize.plot_curve(tfe,period=aRRLyraeFund.period_this)




## parameters for entering tfes into database
source_class = "rr lyrae"
survey = "full"
points_per_curve = len(aCadence.error_this)
period = aRRLyraeFund.period_this
curve_info = [points_per_curve,source_class,0,0,0,0,None,survey,0,period]
curve_info_names = ["number_points","classification","c1","e1","c2","e2","raw_xml","survey","xml_filename","true_period"]



Exemplo n.º 6
0
cursor.execute(sql_cmd)

# make a nice view of the features table
sql_cmd = """CREATE VIEW IF NOT EXISTS sources_short AS SELECT source_id,original_source_id,classification,noisification,noise_args,true_period FROM sources"""
cursor.execute(sql_cmd)

# set up the survey and
# create two curves and visualize them
aSurvey = synthetic_data.surveySetup()
aCadence = synthetic_data.CadenceFromVOSource()
aSurvey.aCadence = aCadence
aSurvey.generateCurve()
tfe = np.column_stack(
    (aSurvey.times[:, np.newaxis], aSurvey.fluxes[:, np.newaxis],
     aSurvey.errors[:, np.newaxis]))
visualize.plot_curve(tfe, period=(2 * aSurvey.period_this))

# generate training data, add to db
survey = 'normal'
for i in range(1000):
    aSurvey.generateCurve()
    tfe = np.column_stack(
        (aSurvey.times[:, np.newaxis], aSurvey.fluxes[:, np.newaxis],
         aSurvey.errors[:, np.newaxis]))
    points_per_curve = len(aSurvey.times)
    source_class = aSurvey.class_name
    period = aSurvey.period_this
    curve_info = [
        points_per_curve, source_class, 0, 0, 0, 0, None, survey, 0, period
    ]
    curve_info_names = [
Exemplo n.º 7
0
        ## get the cadences
        hip = synthetic_data.CadenceFromSurvey(database_location='../db/hipparcos_cadences.db')
        ogle = synthetic_data.CadenceFromSurvey(database_location='../db/ogle_cadences.db')
        cadence_dict = {'hip':hip,'ogle':ogle}
        period = 25
        number_points = 4000
        
        ## make a curve
        number_tfe = 60
        power = 10
        tfe = np.ndarray(number_tfe*3).reshape((number_tfe,3))
        tfe[:,0] = np.linspace(.01,.99,number_tfe)
        tfe[:,1] = np.abs(tfe[:,0]) - pow(tfe[:,0],power)
        print tfe

        ## examine noisification
        for i in range(1):
            tfe2 = cadence_noisify_smoothed(tfe,['ogle','first',number_points,period,cadence_dict])
        print tfe2
        visualize.plot_curve(tfe2,period=period)

    if 0:
        randoms = np.random.normal(size=(10,3))
        randoms_out = cadence_noisify(randoms,[5,'first',6])
        print randoms_out
        print randoms

    if 0:
        noisification_dict = get_noisification_dict()
        print noisification_dict
Exemplo n.º 8
0
                                        tfe,
                                        table='measurements_smoothed')

connection.commit()

########### VISUALIZE SMOOTHED CURVES ###########
## does this work out okay?
## run several times and use evince to view both at once
which = np.random.randint(low=0, high=len(db_info))
reload(visualize)

tfe = create_database.get_measurements(db_info[which][0], cursor)
visualize.plot_curve(tfe,
                     1 / db_info[which][4],
                     classification=db_info[which][2],
                     survey=db_info[which][3],
                     show_plot=False,
                     save_figure=True,
                     save_figure_name='original_plot.pdf')

tfe = create_database.get_measurements(db_info[which][0],
                                       cursor,
                                       table='measurements_smoothed')
visualize.plot_curve(tfe,
                     1 / db_info[which][4],
                     classification=db_info[which][2],
                     survey=db_info[which][3],
                     show_plot=False,
                     save_figure=True,
                     save_figure_name='smoothed_plot.pdf')
Exemplo n.º 9
0
        print aCadence.unique_source_ids.size
        aCadence.generate_cadence()
        print aCadence.cadence_this
        print aCadence.error_this

    if 0:
        aSurvey = surveySetup(aCadence=CadenceFromSurvey())
        aSurvey.generateCurve()
        print "class is: " + aSurvey.class_name
        tfe = np.column_stack(
            (aSurvey.times[:, np.newaxis], aSurvey.fluxes[:, np.newaxis],
             aSurvey.errors[:, np.newaxis]))
        print "the period is:"
        print aSurvey.period_this
        visualize.plot_curve(tfe,
                             freq=(1 / (2 * aSurvey.period_this)),
                             classification=aSurvey.class_name)

    if 0:
        aRRLyraeFund = RRLyraeFund()
        aRRLyraeFund.generateCurve()
        print "RR Lyrae Fundamental Mode Period:"
        print aRRLyraeFund.period_this
        aJittered = jittered()
        cadence = aJittered()
        fluxes = aRRLyraeFund.curve_this(cadence)
        tfe = np.column_stack((cadence[:, np.newaxis], fluxes[:, np.newaxis],
                               np.empty(fluxes.size)[:np.newaxis]))
        visualize.plot_curve(tfe, freq=(1 / (2 * aRRLyraeFund.period_this)))

    if 0:
Exemplo n.º 10
0
        print aCadence.unique_source_ids
        print aCadence.unique_source_ids.size
        aCadence.generate_cadence()
        print aCadence.cadence_this
        print aCadence.error_this

    if 0:
        aSurvey = surveySetup(aCadence = CadenceFromSurvey())
        aSurvey.generateCurve()
        print "class is: " + aSurvey.class_name
        tfe = np.column_stack((aSurvey.times[:,np.newaxis],aSurvey.fluxes[:,np.newaxis],aSurvey.errors[:,np.newaxis]))
        print "the period is:"
        print aSurvey.period_this
        visualize.plot_curve(tfe,
                             freq=(1 / 
                                   (2*aSurvey.period_this)),
                             classification=
                             aSurvey.class_name)        



    if 0:
        aRRLyraeFund = RRLyraeFund()
        aRRLyraeFund.generateCurve()
        print "RR Lyrae Fundamental Mode Period:"
        print aRRLyraeFund.period_this
        aJittered = jittered()
        cadence = aJittered()
        fluxes = aRRLyraeFund.curve_this(cadence)
        tfe = np.column_stack((cadence[:,np.newaxis],fluxes[:,np.newaxis], np.empty(fluxes.size)[:np.newaxis]))
        visualize.plot_curve(tfe,freq= (1 / (2*aRRLyraeFund.period_this)))
Exemplo n.º 11
0
# make a nice view of the features table
sql_cmd = """CREATE VIEW IF NOT EXISTS features_short AS SELECT source_id,freq1_harmonics_freq_0,std,max,weighted_average FROM features"""
cursor.execute(sql_cmd)

# make a nice view of the features table
sql_cmd = """CREATE VIEW IF NOT EXISTS sources_short AS SELECT source_id,original_source_id,classification,noisification,noise_args,true_period FROM sources"""
cursor.execute(sql_cmd)

# set up the survey and
# create two curves and visualize them
aSurvey = synthetic_data.surveySetup()
aSurvey.generateCurve()
tfe = np.column_stack((aSurvey.times[:,np.newaxis],
		       aSurvey.fluxes[:,np.newaxis],
		       aSurvey.errors[:,np.newaxis]))
visualize.plot_curve(tfe,period=aSurvey.period_this)





# generate training data, add to db
survey='train'
for i in range(500):
	aSurvey.generateCurve()
	tfe = np.column_stack((aSurvey.times[:,np.newaxis],aSurvey.fluxes[:,np.newaxis],aSurvey.errors[:,np.newaxis]))
	points_per_curve = len(aSurvey.times)
	source_class = aSurvey.class_name
	period = aSurvey.period_this
	curve_info = [points_per_curve,source_class,0,0,0,0,None,survey,0,period]
	curve_info_names = ["number_points","classification","c1","e1","c2","e2","raw_xml","survey","xml_filename","true_period"]
Exemplo n.º 12
0
aBetaLyrae = synthetic_data.Eclipsing(dip_ratio=scipy.stats.uniform(loc=.5,
                                                                    scale=.5),
                                      fraction_flat=scipy.stats.uniform(
                                          loc=0, scale=.5))
class_names = [
    'Classical Cepheid', 'Mira', 'RR Lyrae Fundamental', 'Beta Persei',
    'Beta Lyrae'
]
classes = [aClassicalCepheid, aMira, aRRLyraeFund, aBetaPersei, aBetaLyrae]
priors = np.array([.2, .2, .2, .2, .2])
aSurvey = synthetic_data.Survey(class_names, classes, priors, aCadence)
aSurvey.generateCurve()
tfe = np.column_stack(
    (aSurvey.times[:, np.newaxis], aSurvey.fluxes[:, np.newaxis],
     aSurvey.errors[:, np.newaxis]))
visualize.plot_curve(tfe, period=(2 * aSurvey.period_this))

# generate training data, add to db
survey = 'synthetic_train'
for i in range(500):
    aSurvey.generateCurve()
    tfe = np.column_stack(
        (aSurvey.times[:, np.newaxis], aSurvey.fluxes[:, np.newaxis],
         aSurvey.errors[:, np.newaxis]))
    points_per_curve = len(aSurvey.times)
    source_class = aSurvey.class_name
    period = aSurvey.period_this
    curve_info = [
        points_per_curve, source_class, 0, 0, 0, 0, None, survey, 0, period
    ]
    curve_info_names = [
Exemplo n.º 13
0
aBetaPersei = synthetic_data.Eclipsing(
	dip_ratio=scipy.stats.uniform(loc=.2,scale=.8),
	fraction_flat=scipy.stats.uniform(loc=.2,scale=.6))
aBetaLyrae = synthetic_data.Eclipsing(
	dip_ratio=scipy.stats.uniform(loc=.5,scale=.5),
	fraction_flat=scipy.stats.uniform(loc=0,scale=.5))
class_names = ['Classical Cepheid','Mira','RR Lyrae Fundamental',
	       'Beta Persei','Beta Lyrae']
classes = [aClassicalCepheid,aMira,aRRLyraeFund,aBetaPersei,aBetaLyrae]
priors = np.array([.2,.2,.2,.2,.2])
aSurvey = synthetic_data.Survey(class_names,classes,priors,aCadence)
aSurvey.generateCurve()
tfe = np.column_stack((aSurvey.times[:,np.newaxis],
		       aSurvey.fluxes[:,np.newaxis],
		       aSurvey.errors[:,np.newaxis]))
visualize.plot_curve(tfe,period=  (2*aSurvey.period_this))




# generate training data, add to db
survey='synthetic_train'
for i in range(500):
	aSurvey.generateCurve()
	tfe = np.column_stack((aSurvey.times[:,np.newaxis],aSurvey.fluxes[:,np.newaxis],aSurvey.errors[:,np.newaxis]))
	points_per_curve = len(aSurvey.times)
	source_class = aSurvey.class_name
	period = aSurvey.period_this
	curve_info = [points_per_curve,source_class,0,0,0,0,None,survey,0,period]
	curve_info_names = ["number_points","classification","c1","e1","c2","e2","raw_xml","survey","xml_filename","true_period"]
	print source_class