Exemplo n.º 1
0
def visi_info(data, units):
    """"Gets the visibility info."""

    # Get the data.
    visi_data = datasets.convert_float(datasets.get_column(data, 2))
    visi_low = min(visi_data)
    visi_high = max(visi_data)
    visi_avg = calculations.mean(visi_data)
    visi_median = calculations.median(visi_data)
    visi_range = calculations.range(visi_data)
    visi_mode, visi_mode_count = calculations.mode(visi_data)

    # Create the data list.
    data2 = [["Lowest visibility",
              "%.2f %s" % (visi_low, units["visi"])],
             ["Highest visibility",
              "%.2f %s" % (visi_high, units["visi"])],
             ["Average visibility",
              "%.2f %s" % (visi_avg, units["visi"])],
             ["Median visibility",
              "%.2f %s" % (visi_median, units["visi"])],
             ["Range of visibility",
              "%.2f %s" % (visi_range, units["visi"])],
             [
                 "Most common visibility",
                 "%.2f %s (%d occurrences)" %
                 (visi_mode, units["visi"], visi_mode_count)
             ]]

    return data2
Exemplo n.º 2
0
def humi_chart(data, units):
    """"Gets the humidity chart data."""

    # Get the data.
    humi_data = datasets.convert_float(datasets.get_column(data, 5))
    humi_low = min(humi_data)
    humi_high = max(humi_data)
    humi_avg = calculations.mean(humi_data)
    humi_median = calculations.median(humi_data)

    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):

        humi = [data[i][0], "%.2f%%" % (humi_data[i])]
        humi += build_chart(humi_data[i],
                            humi_low,
                            humi_high,
                            humi_avg,
                            humi_median,
                            "%",
                            unit_space=False)
        data2.append(humi)

    return data2
Exemplo n.º 3
0
def airp_info(data, units):
    """Gets the air pressure info."""

    # Get the data.
    num_days = len(data)
    airp_data1, airp_data2 = datasets.split_list(datasets.get_column(data, 6))
    airp_data1 = datasets.convert_float(airp_data1)
    airp_low = min(airp_data1)
    airp_high = max(airp_data1)
    airp_avg = calculations.mean(airp_data1)
    airp_median = calculations.median(airp_data1)
    airp_range = calculations.range(airp_data1)
    airp_mode, airp_mode_count = calculations.mode(airp_data1)
    airp_steady = 0
    airp_rising = 0
    airp_falling = 0
    for i in airp_data2:
        if i == "Steady":
            airp_steady += 1
        elif i == "Rising":
            airp_rising += 1
        elif i == "Falling":
            airp_falling += 1

    # Create the data list.
    data2 = [
        ["Lowest air pressure",
         "%.2f %s" % (airp_low, units["airp"])],
        ["Highest air pressure",
         "%.2f %s" % (airp_high, units["airp"])],
        ["Average air pressure",
         "%.2f %s" % (airp_avg, units["airp"])],
        ["Median air pressure",
         "%.2f %s" % (airp_median, units["airp"])],
        ["Range of air pressures",
         "%.2f %s" % (airp_range, units["airp"])],
        [
            "Most common air pressure",
            "%.2f %s (%d occurrences)" %
            (airp_mode, units["airp"], airp_mode_count)
        ],
        [
            "Days with steady pressure",
            "%d day%s (%d%%)" % (airp_steady, "" if airp_steady == 1 else "s",
                                 (airp_steady / num_days) * 100)
        ],
        [
            "Days with rising pressure",
            "%d day%s (%d%%)" % (airp_rising, "" if airp_rising == 1 else "s",
                                 (airp_rising / num_days) * 100)
        ],
        [
            "Days with falling pressure",
            "%d day%s (%d%%)" %
            (airp_falling, "" if airp_falling == 1 else "s",
             (airp_falling / num_days) * 100)
        ]
    ]

    return data2
Exemplo n.º 4
0
def temp_info(data, units):
    """"Gets the temperature info."""

    # Get the data.
    temp_data = datasets.convert_float(datasets.get_column(data, 1))
    temp_low = min(temp_data)
    temp_high = max(temp_data)
    temp_avg = calculations.mean(temp_data)
    temp_median = calculations.median(temp_data)
    temp_range = calculations.range(temp_data)
    temp_mode, temp_mode_count = calculations.mode(temp_data)

    # Create the data list.
    data2 = [["Lowest temperature",
              "%.2f %s" % (temp_low, units["temp"])],
             ["Highest temperature",
              "%.2f %s" % (temp_high, units["temp"])],
             ["Average temperature",
              "%.2f %s" % (temp_avg, units["temp"])],
             ["Median temperature",
              "%.2f %s" % (temp_median, units["temp"])],
             [
                 "Range of temperatures",
                 "%.2f %s" % (temp_range, units["temp"])
             ],
             [
                 "Most common temperature",
                 "%.2f %s (%d occurrences)" %
                 (temp_mode, units["temp"], temp_mode_count)
             ]]

    return data2
Exemplo n.º 5
0
def chil_info(data, units):
    """"Gets the wind chill info."""

    # Get the data.
    chil_data = datasets.convert_float(datasets.get_column(data, 2))
    chil_low = min(chil_data)
    chil_high = max(chil_data)
    chil_avg = calculations.mean(chil_data)
    chil_median = calculations.median(chil_data)
    chil_range = calculations.range(chil_data)
    chil_mode, chil_mode_count = calculations.mode(chil_data)

    # Create the data list.
    data2 = [["Lowest wind chill",
              "%.2f %s" % (chil_low, units["temp"])],
             ["Highest wind chill",
              "%.2f %s" % (chil_high, units["temp"])],
             ["Average wind chill",
              "%.2f %s" % (chil_avg, units["temp"])],
             ["Median wind chill",
              "%.2f %s" % (chil_median, units["temp"])],
             ["Range of wind chills",
              "%.2f %s" % (chil_range, units["temp"])],
             [
                 "Most common wind chill",
                 "%.2f %s (%d occurrences)" %
                 (chil_mode, units["temp"], chil_mode_count)
             ]]

    return data2
Exemplo n.º 6
0
def prec_chart(data, units):
    """"Gets the precipitation chart data."""
    
    # Get the data.
    prec_data1, prec_data2 = datasets.split_list(datasets.get_column(data, 3))
    prec_split = datasets.split_list2(datasets.get_column(data, 3))
    prec_data1 = datasets.none_to_zero(prec_data1)
    prec_data1 = datasets.convert_float(prec_data1)
    prec_low = min(prec_data1)
    prec_high = max(prec_data1)
    prec_avg = calculations.mean(prec_data1)
    prec_median = calculations.median(prec_data1)
    
    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):
        
        prec = [data[i][0], "%.2f %s" % (prec_data1[i], units["prec"])]
        if prec_avg == prec_data1[i]:
            average = "Average Value"
        else:
            average = prec_avg - prec_data1[i]
            average = "%.2f %s %s" % (abs(average), units["prec"], "above" if prec_avg < prec_data1[i] else "below")
        prec.append(average)
        if prec_low == prec_data1[i]:
            low = "Lowest Value"
        else:
            low = prec_low - prec_data1[i]
            low = "%.2f %s %s" % (abs(low), units["prec"], "above" if prec_low < prec_data1[i] else "below")
        prec.append(low)
        if prec_high == prec_data1[i]:
            high = "Highest Value"
        else:
            high = prec_high - prec_data1[i]
            high = "%.2f %s %s" % (abs(high), units["prec"], "above" if prec_high < prec_data1[i] else "below")
        prec.append(high)
        if prec_median == prec_data1[i]:
            median = "Median Value"
        else:
            median = prec_median - prec_data1[i]
            median = "%.2f %s %s" % (abs(median), units["prec"], "above" if prec_median < prec_data1[i] else "below")
        prec.append(median)
        
        data2.append(prec)
    
    return data2
Exemplo n.º 7
0
def wind_info(data, units):
    """Gets the wind info."""

    # Get the data.
    wind_data1, wind_data2 = datasets.split_list(datasets.get_column(data, 4))
    wind_data1 = datasets.none_to_zero(wind_data1)
    wind_data1 = datasets.convert_float(wind_data1)
    try:
        wind_low = min(wind_data1)
        wind_high = max(wind_data1)
        wind_avg = calculations.mean(wind_data1)
        wind_median = calculations.median(wind_data1)
        wind_range = calculations.range(wind_data1)
    except ZeroDivisionError:
        wind_low = "None"
        wind_high = "None"
        wind_avg = "None"
        wind_median = "None"
        wind_range = "None"
    wind_mode, wind_mode_count = calculations.mode(wind_data2)

    # Change any values, if needed.
    wind_low = "None" if wind_low == "None" else ("%.2f %s" %
                                                  (wind_low, units["wind"]))
    wind_high = "None" if wind_high == "None" else ("%.2f %s" %
                                                    (wind_high, units["wind"]))
    wind_avg = "None" if wind_avg == "None" else ("%.2f %s" %
                                                  (wind_avg, units["wind"]))
    wind_median = "None" if wind_median == "None" else (
        "%.2f %s" % (wind_median, units["wind"]))
    wind_range = "None" if wind_range == "None" else (
        "%.2f %s" % (wind_range, units["wind"]))

    # Create the data list.
    data2 = [["Lowest wind speed",
              wind_low], ["Highest wind speed", wind_high],
             ["Average wind speed", wind_avg],
             ["Median wind speed", wind_median],
             ["Range of wind speeds", wind_range],
             [
                 "Most common wind direction",
                 "%s (%d occurrences)" %
                 (wind_mode if wind_mode != "" else "None", wind_mode_count)
             ]]

    return data2
Exemplo n.º 8
0
def wind_chart(data, units):
    """"Gets the wind chart data."""
    
    # Get the data.
    wind_data1, wind_data2 = datasets.split_list(datasets.get_column(data, 4))
    wind_data1 = datasets.none_to_zero(wind_data1)
    wind_data1 = datasets.convert_float(wind_data1)
    wind_low = min(wind_data1)
    wind_high = max(wind_data1)
    wind_avg = calculations.mean(wind_data1)
    wind_median = calculations.median(wind_data1)
    
    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):
        
        wind = [data[i][0], "%.2f %s" % (wind_data1[i], units["wind"])]
        if wind_avg == wind_data1[i]:
            average = "Average Value"
        else:
            average = wind_avg - wind_data1[i]
            average = "%.2f %s %s" % (abs(average), units["wind"], "above" if wind_avg < wind_data1[i] else "below")
        wind.append(average)
        if wind_low == wind_data1[i]:
            low = "Lowest Value"
        else:
            low = wind_low - wind_data1[i]
            low = "%.2f %s %s" % (abs(low), units["wind"], "above" if wind_low < wind_data1[i] else "below")
        wind.append(low)
        if wind_high == wind_data1[i]:
            high = "Highest Value"
        else:
            high = wind_high - wind_data1[i]
            high = "%.2f %s %s" % (abs(high), units["wind"], "above" if wind_high < wind_data1[i] else "below")
        wind.append(high)
        if wind_median == wind_data1[i]:
            median = "Median Value"
        else:
            median = wind_median - wind_data1[i]
            median = "%.2f %s %s" % (abs(median), units["wind"], "above" if wind_median < wind_data1[i] else "below")
        wind.append(median)
        
        data2.append(wind)
    
    return data2
Exemplo n.º 9
0
def airp_chart(data, units):
    """"Gets the air pressure chart data."""
    
    # Get the data.
    airp_data1, airp_data2 = datasets.split_list(datasets.get_column(data, 6))
    airp_data1 = datasets.convert_float(airp_data1)
    airp_low = min(airp_data1)
    airp_high = max(airp_data1)
    airp_avg = calculations.mean(airp_data1)
    airp_median = calculations.median(airp_data1)
    
    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):
        
        airp = [data[i][0], "%.2f %s" % (airp_data1[i], units["airp"])]
        if airp_avg == airp_data1[i]:
            average = "Average Value"
        else:
            average = airp_avg - airp_data1[i]
            average = "%.2f %s %s" % (abs(average), units["airp"], "above" if airp_avg < airp_data1[i] else "below")
        airp.append(average)
        if airp_low == airp_data1[i]:
            low = "Lowest Value"
        else:
            low = airp_low - airp_data1[i]
            low = "%.2f %s %s" % (abs(low), units["airp"], "above" if airp_low < airp_data1[i] else "below")
        airp.append(low)
        if airp_high == airp_data1[i]:
            high = "Highest Value"
        else:
            high = airp_high - airp_data1[i]
            high = "%.2f %s %s" % (abs(high), units["airp"], "above" if airp_high < airp_data1[i] else "below")
        airp.append(high)
        if airp_median == airp_data1[i]:
            median = "Median Value"
        else:
            median = airp_median - airp_data1[i]
            median = "%.2f %s %s" % (abs(median), units["airp"], "above" if airp_median < airp_data1[i] else "below")
        airp.append(median)
        
        data2.append(airp)
    
    return data2
Exemplo n.º 10
0
def humi_chart(data, units):
    """"Gets the humidity chart data."""
    
    # Get the data.
    humi_data = datasets.convert_float(datasets.get_column(data, 5))
    humi_low = min(humi_data)
    humi_high = max(humi_data)
    humi_avg = calculations.mean(humi_data)
    humi_median = calculations.median(humi_data)
    
    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):
        
        humi = [data[i][0], "%.2f%%" % (humi_data[i])]
        if humi_avg == humi_data[i]:
            average = "Average Value"
        else:
            average = humi_avg - humi_data[i]
            average = "%.2f%% %s" % (abs(average), "above" if humi_avg < humi_data[i] else "below")
        humi.append(average)
        if humi_low == humi_data[i]:
            low = "Lowest Value"
        else:
            low = humi_low - humi_data[i]
            low = "%.2f%% %s" % (abs(low), "above" if humi_low < humi_data[i] else "below")
        humi.append(low)
        if humi_high == humi_data[i]:
            high = "Highest Value"
        else:
            high = humi_high - humi_data[i]
            high = "%.2f%% %s" % (abs(high), "above" if humi_high < humi_data[i] else "below")
        humi.append(high)
        if humi_median == humi_data[i]:
            median = "Median Value"
        else:
            median = humi_median - humi_data[i]
            median = "%.2f%% %s" % (abs(median), "above" if humi_median < humi_data[i] else "below")
        humi.append(median)
        
        data2.append(humi)
    
    return data2
Exemplo n.º 11
0
def temp_chart(data, units):
    """"Gets the temperature chart data."""
    
    # Get the data.
    temp_data = datasets.convert_float(datasets.get_column(data, 1))
    temp_low = min(temp_data)
    temp_high = max(temp_data)
    temp_avg = calculations.mean(temp_data)
    temp_median = calculations.median(temp_data)
    
    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):
        
        temp = [data[i][0], "%.2f %s" % (temp_data[i], units["temp"])]
        if temp_avg == temp_data[i]:
            average = "Average Value"
        else:
            average = temp_avg - temp_data[i]
            average = "%.2f %s %s" % (abs(average), units["temp"], "above" if temp_avg < temp_data[i] else "below")
        temp.append(average)
        if temp_low == temp_data[i]:
            low = "Lowest Value"
        else:
            low = temp_low - temp_data[i]
            low = "%.2f %s %s" % (abs(low), units["temp"], "above" if temp_low < temp_data[i] else "below")
        temp.append(low)
        if temp_high == temp_data[i]:
            high = "Highest Value"
        else:
            high = temp_high - temp_data[i]
            high = "%.2f %s %s" % (abs(high), units["temp"], "above" if temp_high < temp_data[i] else "below")
        temp.append(high)
        if temp_median == temp_data[i]:
            median = "Median Value"
        else:
            median = temp_median - temp_data[i]
            median = "%.2f %s %s" % (abs(median), units["temp"], "above" if temp_median < temp_data[i] else "below")
        temp.append(median)
        
        data2.append(temp)
    
    return data2
Exemplo n.º 12
0
def visi_chart(data, units):
    """"Gets the visibility chart data."""
    
    # Get the data.
    visi_data = datasets.convert_float(datasets.get_column(data, 7))
    visi_low = min(visi_data)
    visi_high = max(visi_data)
    visi_avg = calculations.mean(visi_data)
    visi_median = calculations.median(visi_data)
    
    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):
        
        visi = [data[i][0], "%.2f %s" % (visi_data[i], units["visi"])]
        if visi_avg == visi_data[i]:
            average = "Average Value"
        else:
            average = visi_avg - visi_data[i]
            average = "%.2f %s %s" % (abs(average), units["visi"], "above" if visi_avg < visi_data[i] else "below")
        visi.append(average)
        if visi_low == visi_data[i]:
            low = "Lowest Value"
        else:
            low = visi_low - visi_data[i]
            low = "%.2f %s %s" % (abs(low), units["visi"], "above" if visi_low < visi_data[i] else "below")
        visi.append(low)
        if visi_high == visi_data[i]:
            high = "Highest Value"
        else:
            high = visi_high - visi_data[i]
            high = "%.2f %s %s" % (abs(high), units["visi"], "above" if visi_high < visi_data[i] else "below")
        visi.append(high)
        if visi_median == visi_data[i]:
            median = "Median Value"
        else:
            median = visi_median - visi_data[i]
            median = "%.2f %s %s" % (abs(median), units["visi"], "above" if visi_median < visi_data[i] else "below")
        visi.append(median)
        
        data2.append(visi)
    
    return data2
Exemplo n.º 13
0
def chil_chart(data, units):
    """"Gets the wind chill chart data."""
    
    # Get the data.
    chil_data = datasets.convert_float(datasets.get_column(data, 2))
    chil_low = min(chil_data)
    chil_high = max(chil_data)
    chil_avg = calculations.mean(chil_data)
    chil_median = calculations.median(chil_data)
    
    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):
        
        chil = [data[i][0], "%.2f %s" % (chil_data[i], units["temp"])]
        if chil_avg == chil_data[i]:
            average = "Average Value"
        else:
            average = chil_avg - chil_data[i]
            average = "%.2f %s %s" % (abs(average), units["temp"], "above" if chil_avg < chil_data[i] else "below")
        chil.append(average)
        if chil_low == chil_data[i]:
            low = "Lowest Value"
        else:
            low = chil_low - chil_data[i]
            low = "%.2f %s %s" % (abs(low), units["temp"], "above" if chil_low < chil_data[i] else "below")
        chil.append(low)
        if chil_high == chil_data[i]:
            high = "Highest Value"
        else:
            high = chil_high - chil_data[i]
            high = "%.2f %s %s" % (abs(high), units["temp"], "above" if chil_high < chil_data[i] else "below")
        chil.append(high)
        if chil_median == chil_data[i]:
            median = "Median Value"
        else:
            median = chil_median - chil_data[i]
            median = "%.2f %s %s" % (abs(median), units["temp"], "above" if chil_median < chil_data[i] else "below")
        chil.append(median)
        
        data2.append(chil)
    
    return data2
Exemplo n.º 14
0
def chil_chart(data, units):
    """"Gets the wind chill chart data."""

    # Get the data.
    chil_data = datasets.convert_float(datasets.get_column(data, 2))
    chil_low = min(chil_data)
    chil_high = max(chil_data)
    chil_avg = calculations.mean(chil_data)
    chil_median = calculations.median(chil_data)

    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):

        chil = [data[i][0], "%.2f %s" % (chil_data[i], units["temp"])]
        chil += build_chart(chil_data[i], chil_low, chil_high, chil_avg,
                            chil_median, units["temp"])
        data2.append(chil)

    return data2
Exemplo n.º 15
0
def temp_chart(data, units):
    """"Gets the temperature chart data."""

    # Get the data.
    temp_data = datasets.convert_float(datasets.get_column(data, 1))
    temp_low = min(temp_data)
    temp_high = max(temp_data)
    temp_avg = calculations.mean(temp_data)
    temp_median = calculations.median(temp_data)

    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):

        temp = [data[i][0], "%.2f %s" % (temp_data[i], units["temp"])]
        temp += build_chart(temp_data[i], temp_low, temp_high, temp_avg,
                            temp_median, units["temp"])
        data2.append(temp)

    return data2
Exemplo n.º 16
0
def visi_chart(data, units):
    """"Gets the visibility chart data."""

    # Get the data.
    visi_data = datasets.convert_float(datasets.get_column(data, 7))
    visi_low = min(visi_data)
    visi_high = max(visi_data)
    visi_avg = calculations.mean(visi_data)
    visi_median = calculations.median(visi_data)

    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):

        visi = [data[i][0], "%.2f %s" % (visi_data[i], units["visi"])]
        visi += build_chart(visi_data[i], visi_low, visi_high, visi_avg,
                            visi_median, units["visi"])
        data2.append(visi)

    return data2
Exemplo n.º 17
0
def airp_chart(data, units):
    """"Gets the air pressure chart data."""

    # Get the data.
    airp_data1, airp_data2 = datasets.split_list(datasets.get_column(data, 6))
    airp_data1 = datasets.convert_float(airp_data1)
    airp_low = min(airp_data1)
    airp_high = max(airp_data1)
    airp_avg = calculations.mean(airp_data1)
    airp_median = calculations.median(airp_data1)

    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):

        airp = [data[i][0], "%.2f %s" % (airp_data1[i], units["airp"])]
        airp += build_chart(airp_data1[i], airp_low, airp_high, airp_avg,
                            airp_median, units["airp"])
        data2.append(airp)

    return data2
Exemplo n.º 18
0
def wind_info(data, units):
    """Gets the wind info."""
    
    # Get the data.
    wind_data1, wind_data2 = datasets.split_list(datasets.get_column(data, 4))
    wind_data1 = datasets.none_to_zero(wind_data1)
    wind_data1 = datasets.convert_float(wind_data1)
    try:
        wind_low = min(wind_data1)
        wind_high = max(wind_data1)
        wind_avg = calculations.mean(wind_data1)
        wind_median = calculations.median(wind_data1)
        wind_range = calculations.range(wind_data1)
    except:
        wind_low = "None"
        wind_high = "None"
        wind_avg = "None"
        wind_median = "None"
        wind_range = "None"
    wind_mode, wind_mode_count = calculations.mode(wind_data2)
    
    # Change any values, if needed.
    wind_low = "None" if wind_low == "None" else ("%.2f %s" % (wind_low, units["wind"]))
    wind_high = "None" if wind_high == "None" else ("%.2f %s" % (wind_high, units["wind"]))
    wind_avg = "None" if wind_avg == "None" else ("%.2f %s" % (wind_avg, units["wind"]))
    wind_median = "None" if wind_median == "None" else ("%.2f %s" % (wind_median, units["wind"]))
    wind_range = "None" if wind_range == "None" else ("%.2f %s" % (wind_range, units["wind"]))
    
    # Create the data list.
    data2 = [
        ["Lowest wind speed", wind_low],
        ["Highest wind speed", wind_high],
        ["Average wind speed", wind_avg],
        ["Median wind speed", wind_median],
        ["Range of wind speeds", wind_range],
        ["Most common wind direction", "%s (%d occurrences)" % (wind_mode if wind_mode != "" else "None", wind_mode_count)]
    ]
    
    return data2
Exemplo n.º 19
0
def prec_chart(data, units):
    """"Gets the precipitation chart data."""

    # Get the data.
    prec_data1, prec_data2 = datasets.split_list(datasets.get_column(data, 3))
    prec_data1 = datasets.none_to_zero(prec_data1)
    prec_data1 = datasets.convert_float(prec_data1)
    prec_low = min(prec_data1)
    prec_high = max(prec_data1)
    prec_avg = calculations.mean(prec_data1)
    prec_median = calculations.median(prec_data1)

    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):

        prec = [data[i][0], "%.2f %s" % (prec_data1[i], units["prec"])]
        prec += build_chart(prec_data1[i], prec_low, prec_high, prec_avg,
                            prec_median, units["prec"])
        data2.append(prec)

    return data2
Exemplo n.º 20
0
def wind_chart(data, units):
    """"Gets the wind chart data."""

    # Get the data.
    wind_data1, wind_data2 = datasets.split_list(datasets.get_column(data, 4))
    wind_data1 = datasets.none_to_zero(wind_data1)
    wind_data1 = datasets.convert_float(wind_data1)
    wind_low = min(wind_data1)
    wind_high = max(wind_data1)
    wind_avg = calculations.mean(wind_data1)
    wind_median = calculations.median(wind_data1)

    # Calculate and add the data.
    data2 = []
    for i in range(0, len(data)):

        wind = [data[i][0], "%.2f %s" % (wind_data1[i], units["wind"])]
        wind += build_chart(wind_data1[i], wind_low, wind_high, wind_avg,
                            wind_median, units["wind"])
        data2.append(wind)

    return data2
Exemplo n.º 21
0
def airp_info(data, units):
    """Gets the air pressure info."""
    
    # Get the data.
    num_days = len(data)
    airp_data1, airp_data2 = datasets.split_list(datasets.get_column(data, 6))
    airp_data1 = datasets.convert_float(airp_data1)
    airp_low = min(airp_data1)
    airp_high = max(airp_data1)
    airp_avg = calculations.mean(airp_data1)
    airp_median = calculations.median(airp_data1)
    airp_range = calculations.range(airp_data1)
    airp_mode, airp_mode_count = calculations.mode(airp_data1)
    airp_steady = 0
    airp_rising = 0
    airp_falling = 0
    for i in airp_data2:
        if i == "Steady":
            airp_steady += 1
        elif i == "Rising":
            airp_rising += 1
        elif i == "Falling":
            airp_falling += 1
    
    # Create the data list.
    data2 = [
        ["Lowest air pressure", "%.2f %s" % (airp_low, units["airp"])],
        ["Highest air pressure", "%.2f %s" % (airp_high, units["airp"])],
        ["Average air pressure", "%.2f %s" % (airp_avg, units["airp"])],
        ["Median air pressure", "%.2f %s" % (airp_median, units["airp"])],
        ["Range of air pressures", "%.2f %s" % (airp_range, units["airp"])],
        ["Most common air pressure", "%.2f %s (%d occurrences)" % (airp_mode, units["airp"], airp_mode_count)],
        ["Days with steady pressure", "%d day%s (%d%%)" % (airp_steady, "" if airp_steady == 1 else "s", (airp_steady / num_days) * 100)],
        ["Days with rising pressure", "%d day%s (%d%%)" % (airp_rising, "" if airp_rising == 1 else "s", (airp_rising / num_days) * 100)],
        ["Days with falling pressure", "%d day%s (%d%%)" % (airp_falling, "" if airp_falling == 1 else "s", (airp_falling / num_days) * 100)]
    ]
    
    return data2
Exemplo n.º 22
0
def visi_info(data, units):
    """"Gets the visibility info."""
    
    # Get the data.
    visi_data = datasets.convert_float(datasets.get_column(data, 2))
    visi_low = min(visi_data)
    visi_high = max(visi_data)
    visi_avg = calculations.mean(visi_data)
    visi_median = calculations.median(visi_data)
    visi_range = calculations.range(visi_data)
    visi_mode, visi_mode_count = calculations.mode(visi_data)
    
    # Create the data list.
    data2 = [
        ["Lowest visibility", "%.2f %s" % (visi_low, units["visi"])],
        ["Highest visibility", "%.2f %s" % (visi_high, units["visi"])],
        ["Average visibility", "%.2f %s" % (visi_avg, units["visi"])],
        ["Median visibility", "%.2f %s" % (visi_median, units["visi"])],
        ["Range of visibility", "%.2f %s" % (visi_range, units["visi"])],
        ["Most common visibility", "%.2f %s (%d occurrences)" % (visi_mode, units["visi"], visi_mode_count)]
    ]
    
    return data2
Exemplo n.º 23
0
def humi_info(data, units):
    """Gets the humidity info."""
    
    # Get the data.
    humi_data = datasets.convert_float(datasets.get_column(data, 5))
    humi_low = min(humi_data)
    humi_high = max(humi_data)
    humi_avg = calculations.mean(humi_data)
    humi_median = calculations.median(humi_data)
    humi_range = calculations.range(humi_data)
    humi_mode, humi_mode_count = calculations.mode(humi_data)
    
    # Create the data list.
    data2 = [
        ["Lowest humidity", "%.2f%%" % humi_low],
        ["Highest humidity", "%.2f%%" % humi_high],
        ["Average humidity", "%.2f%%" % humi_avg],
        ["Median humidity", "%.2f%%" % humi_median],
        ["Range of humidity", "%.2f%%" % humi_range],
        ["Most common humidity", "%.2f%% (%d occurrences)" % (humi_mode, humi_mode_count)]
    ]
    
    return data2
Exemplo n.º 24
0
def temp_info(data, units):
    """"Gets the temperature info."""
    
    # Get the data.
    temp_data = datasets.convert_float(datasets.get_column(data, 1))
    temp_low = min(temp_data)
    temp_high = max(temp_data)
    temp_avg = calculations.mean(temp_data)
    temp_median = calculations.median(temp_data)
    temp_range = calculations.range(temp_data)
    temp_mode, temp_mode_count = calculations.mode(temp_data)
    
    # Create the data list.
    data2 = [
        ["Lowest temperature", "%.2f %s" % (temp_low, units["temp"])],
        ["Highest temperature", "%.2f %s" % (temp_high, units["temp"])],
        ["Average temperature", "%.2f %s" % (temp_avg, units["temp"])],
        ["Median temperature", "%.2f %s" % (temp_median, units["temp"])],
        ["Range of temperatures", "%.2f %s" % (temp_range, units["temp"])],
        ["Most common temperature", "%.2f %s (%d occurrences)" % (temp_mode, units["temp"], temp_mode_count)]
    ]
    
    return data2
Exemplo n.º 25
0
def chil_info(data, units):
    """"Gets the wind chill info."""
    
    # Get the data.
    chil_data = datasets.convert_float(datasets.get_column(data, 2))
    chil_low = min(chil_data)
    chil_high = max(chil_data)
    chil_avg = calculations.mean(chil_data)
    chil_median = calculations.median(chil_data)
    chil_range = calculations.range(chil_data)
    chil_mode, chil_mode_count = calculations.mode(chil_data)
    
    # Create the data list.
    data2 = [
        ["Lowest wind chill", "%.2f %s" % (chil_low, units["temp"])],
        ["Highest wind chill", "%.2f %s" % (chil_high, units["temp"])],
        ["Average wind chill", "%.2f %s" % (chil_avg, units["temp"])],
        ["Median wind chill", "%.2f %s" % (chil_median, units["temp"])],
        ["Range of wind chills", "%.2f %s" % (chil_range, units["temp"])],
        ["Most common wind chill", "%.2f %s (%d occurrences)" % (chil_mode, units["temp"], chil_mode_count)]
    ]
    
    return data2
Exemplo n.º 26
0
def humi_info(data, units):
    """Gets the humidity info."""

    # Get the data.
    humi_data = datasets.convert_float(datasets.get_column(data, 5))
    humi_low = min(humi_data)
    humi_high = max(humi_data)
    humi_avg = calculations.mean(humi_data)
    humi_median = calculations.median(humi_data)
    humi_range = calculations.range(humi_data)
    humi_mode, humi_mode_count = calculations.mode(humi_data)

    # Create the data list.
    data2 = [["Lowest humidity", "%.2f%%" % humi_low],
             ["Highest humidity", "%.2f%%" % humi_high],
             ["Average humidity", "%.2f%%" % humi_avg],
             ["Median humidity", "%.2f%%" % humi_median],
             ["Range of humidity", "%.2f%%" % humi_range],
             [
                 "Most common humidity",
                 "%.2f%% (%d occurrences)" % (humi_mode, humi_mode_count)
             ]]

    return data2
Exemplo n.º 27
0
def general_info(data, units):
    """Gets the general info."""
    
    # Get the date data.
    date_data = datasets.get_column(data, 0)
    date_first = date_data[0]
    date_last = date_data[len(date_data) - 1]
    date_first2 = datetime.datetime.strptime(date_first, "%d/%m/%Y")
    date_last2 = datetime.datetime.strptime(date_last, "%d/%m/%Y")
    date_num = (date_last2 - date_first2).days + 1
    day_num = len(data)
    
    # Get the temperature data.
    temp_data = datasets.convert_float(datasets.get_column(data, 1))
    temp_low = min(temp_data)
    temp_high = max(temp_data)
    temp_avg = calculations.mean(temp_data)
    
    # Get the wind chill data.
    chil_data = datasets.convert_float(datasets.get_column(data, 2))
    chil_low = min(chil_data)
    chil_high = max(chil_data)
    chil_avg = calculations.mean(chil_data)
    
    # Get the precipitation data.
    prec_data1, prec_data2 = datasets.split_list(datasets.get_column(data, 3))
    prec_data1 = datasets.convert_float(datasets.none_to_zero(prec_data1))
    try:
        prec_low = min(prec_data1)
        prec_high = max(prec_data1)
        prec_avg = calculations.mean(prec_data1)
    except:
        prec_low = "None"
        prec_high = "None"
        prec_avg = "None"
    
    # Get the wind data.
    wind_data1, wind_data2 = datasets.split_list(datasets.get_column(data, 4))
    wind_data1 = datasets.convert_float(datasets.none_to_zero(wind_data1))
    try:
        wind_low = min(wind_data1)
        wind_high = max(wind_data1)
        wind_avg = calculations.mean(wind_data1)
    except:
        wind_low = "None"
        wind_high = "None"
        wind_avg = "None"
    
    # Get the humidity data.
    humi_data = datasets.convert_float(datasets.get_column(data, 5))
    humi_low = min(humi_data)
    humi_high = max(humi_data)
    humi_avg = calculations.mean(humi_data)
    
    # Get the air pressure data.
    airp_data1, airp_data2 = datasets.split_list(datasets.get_column(data, 6))
    airp_data1 = datasets.convert_float(airp_data1)
    airp_low = min(airp_data1)
    airp_high = max(airp_data1)
    airp_avg = calculations.mean(airp_data1)
    
    # Get the visibility data.
    visi_data = datasets.convert_float(datasets.get_column(data, 7))
    visi_low = min(visi_data)
    visi_high = max(visi_data)
    visi_avg = calculations.mean(visi_data)
    
    # Get the cloud cover data.
    clou_data = datasets.split_list3(datasets.get_column(data, 8))
    clou_data1 = Counter(clou_data[0])
    clou_data2 = Counter(datasets.strip_items(clou_data[1], ["(", ")"]))
    clou_data1_counter = clou_data1.most_common(1)[0]
    clou_data2_counter = clou_data2.most_common(1)[0]
    clou_mode1 = clou_data1_counter[0]
    clou_mode1_count = clou_data1_counter[1]
    clou_mode2 = clou_data2_counter[0]
    clou_mode2_count = clou_data2_counter[1]
    
    # Change any values, if needed.
    prec_low = "None" if prec_low == "None" else ("%.2f %s" % (prec_low, units["prec"]))
    prec_high = "None" if prec_high == "None" else ("%.2f %s" % (prec_high, units["prec"]))
    prec_avg = "None" if prec_avg == "None" else ("%.2f %s" % (prec_avg, units["prec"]))
    wind_low = "None" if wind_low == "None" else ("%.2f %s" % (wind_low, units["wind"]))
    wind_high = "None" if wind_high == "None" else ("%.2f %s" % (wind_high, units["wind"]))
    wind_avg = "None" if wind_avg == "None" else ("%.2f %s" % (wind_avg, units["wind"]))
    
    # Create the data list.
    data2 = [
        ["First date", "%s" % date_first],
        ["Last date", "%s" % date_last],
        ["Number of days", "%d days" % day_num],
        ["Range of days", "%d days" % date_num],
        ["Lowest temperature", "%.2f %s" % (temp_low, units["temp"])], 
        ["Highest temperature", "%.2f %s" % (temp_high, units["temp"])],
        ["Average temperature", "%.2f %s" % (temp_avg, units["temp"])],
        ["Lowest wind chill", "%.2f %s" % (chil_low, units["temp"])], 
        ["Highest wind chill", "%.2f %s" % (chil_high, units["temp"])],
        ["Average wind chill", "%.2f %s" % (chil_avg, units["temp"])],
        ["Lowest precipitation", prec_low],
        ["Highest precipitation", prec_high],
        ["Average precipitation", prec_avg],
        ["Lowest wind speed", wind_low],
        ["Highest wind speed", wind_high],
        ["Average wind speed", wind_avg],
        ["Lowest humidity", "%.2f%%" % humi_low], 
        ["Highest humidity", "%.2f%%" % humi_high],
        ["Average humidity", "%.2f%%" % humi_avg],
        ["Lowest air pressure", "%.2f %s" % (airp_low, units["airp"])],
        ["Highest air pressure", "%.2f %s" % (airp_high, units["airp"])],
        ["Average air pressure", "%.2f %s" % (airp_avg, units["airp"])],
        ["Lowest visibility", "%.2f %s" % (visi_low, units["visi"])], 
        ["Highest visibility", "%.2f %s" % (visi_high, units["visi"])],
        ["Average visibility", "%.2f %s" % (visi_avg, units["visi"])],
        ["Most common cloud cover", "%s (%d occurrences)" % (clou_mode1, clou_mode1_count)],
        ["Most common cloud type", "%s (%d occurrences)" % (clou_mode2, clou_mode2_count)]
    ]
    
    return data2
Exemplo n.º 28
0
def prec_info(data, units):
    """"Gets the precipitation info."""
    
    # Get the data.
    num_days = len(data)
    prec_data1, prec_data2 = datasets.split_list(datasets.get_column(data, 3))
    prec_split = datasets.split_list2(datasets.get_column(data, 3))
    prec_data1 = datasets.none_to_zero(prec_data1)
    prec_data1 = datasets.convert_float(prec_data1)
    try:
        prec_low = min(prec_data1)
        prec_high = max(prec_data1)
        prec_avg = calculations.mean(prec_data1)
        prec_median = calculations.median(prec_data1)
        prec_range = calculations.range(prec_data1)
    except:
        prec_low = "None"
        prec_high = "None"
        prec_avg = "None"
        prec_median = "None"
        prec_range = "None"
    prec_total = 0
    prec_total_rain = 0
    prec_total_snow = 0
    prec_total_hail = 0
    prec_total_sleet = 0
    prec_none = 0
    prec_rain = 0
    prec_snow = 0
    prec_hail = 0
    prec_sleet = 0
    for i in prec_split:
        if i[1] != "None":
            prec_total += float(i[0])
        if i[1] == "None":
            prec_none += 1
        elif i[1] == "Rain":
            prec_total_rain += float(i[0])
            prec_rain += 1
        elif i[1] == "Snow":
            prec_total_snow += float(i[0])
            prec_snow += 1
        elif i[1] == "Hail":
            prec_total_hail += float(i[0])
            prec_hail += 1
        elif i[1] == "Sleet":
            prec_total_sleet += float(i[0])
            prec_sleet += 1
    prec_mode, prec_mode_count = calculations.mode(prec_data2)
    if prec_total == 0:
        prec_per_rain = "0%"
        prec_per_snow = "0%"
        prec_per_hail = "0%"
        prec_per_sleet = "0%"
    else:
        prec_per_rain = "%.2f%%" % ((prec_total_rain / prec_total) * 100)
        prec_per_snow = "%.2f%%" % ((prec_total_snow / prec_total) * 100)
        prec_per_hail = "%.2f%%" % ((prec_total_hail / prec_total) * 100)
        prec_per_sleet = "%.2f%%" % ((prec_total_sleet / prec_total) * 100)
    
    # Change any values, if needed.
    prec_low = "None" if prec_low == "None" else ("%.2f %s" % (prec_low, units["prec"]))
    prec_high = "None" if prec_high == "None" else ("%.2f %s" % (prec_high, units["prec"]))
    prec_avg = "None" if prec_avg == "None" else ("%.2f %s" % (prec_avg, units["prec"]))
    prec_median = "None" if prec_median == "None" else ("%.2f %s" % (prec_median, units["prec"]))
    prec_range = "None" if prec_range == "None" else ("%.2f %s" % (prec_range, units["prec"]))
    
    # Create the data list.
    data2 = [
        ["Lowest precipitation", prec_low],
        ["Highest precipitation", prec_high],
        ["Average precipitation", prec_avg],
        ["Median precipitation", prec_median],
        ["Range of precipitation", prec_range],
        ["Total precipitation", "%.2f %s" % (prec_total, units["prec"])],
        ["Total rain", "%.2f %s (%s)" % (prec_total_rain, units["prec"], prec_per_rain)],
        ["Total snow", "%.2f %s (%s)" % (prec_total_snow, units["prec"], prec_per_snow)],
        ["Total hail", "%.2f %s (%s)" % (prec_total_hail, units["prec"], prec_per_hail)],
        ["Total sleet", "%.2f %s (%s)" % (prec_total_sleet, units["prec"], prec_per_sleet)],
        ["Days with no precipitation", "%d day%s (%.2f%%)" % (prec_none, "" if prec_none == 1 else "s", (prec_none / num_days) * 100)],
        ["Days with rain", "%d day%s (%.2f%%)" % (prec_rain, "" if prec_rain == 1 else "s", (prec_rain / num_days) * 100)],
        ["Days with snow", "%d day%s (%.2f%%)" % (prec_snow, "" if prec_snow == 1 else "s", (prec_snow / num_days) * 100)],
        ["Days with hail", "%d day%s (%.2f%%)" % (prec_hail, "" if prec_hail == 1 else "s", (prec_hail / num_days) * 100)],
        ["Days with sleet", "%d day%s (%.2f%%)" % (prec_sleet, "" if prec_sleet == 1 else "s", (prec_sleet / num_days) * 100)],
        ["Most common precipitation type", "%s (%d occurrences)" % (prec_mode if prec_mode != "" else "None", prec_mode_count)]
    ]
    
    return data2
Exemplo n.º 29
0
def general_info(data, units):
    """Gets the general info."""

    # Get the date data.
    date_data = datasets.get_column(data, 0)
    date_first = date_data[0]
    date_last = date_data[len(date_data) - 1]
    date_first2 = datetime.datetime.strptime(date_first, "%d/%m/%Y")
    date_last2 = datetime.datetime.strptime(date_last, "%d/%m/%Y")
    date_num = (date_last2 - date_first2).days + 1
    day_num = len(data)

    # Get the temperature data.
    temp_data = datasets.convert_float(datasets.get_column(data, 1))
    temp_low = min(temp_data)
    temp_high = max(temp_data)
    temp_avg = calculations.mean(temp_data)

    # Get the wind chill data.
    chil_data = datasets.convert_float(datasets.get_column(data, 2))
    chil_low = min(chil_data)
    chil_high = max(chil_data)
    chil_avg = calculations.mean(chil_data)

    # Get the precipitation data.
    prec_data1, prec_data2 = datasets.split_list(datasets.get_column(data, 3))
    prec_data1 = datasets.convert_float(datasets.none_to_zero(prec_data1))
    try:
        prec_low = min(prec_data1)
        prec_high = max(prec_data1)
        prec_avg = calculations.mean(prec_data1)
    except ZeroDivisionError:
        prec_low = "None"
        prec_high = "None"
        prec_avg = "None"

    # Get the wind data.
    wind_data1, wind_data2 = datasets.split_list(datasets.get_column(data, 4))
    wind_data1 = datasets.convert_float(datasets.none_to_zero(wind_data1))
    try:
        wind_low = min(wind_data1)
        wind_high = max(wind_data1)
        wind_avg = calculations.mean(wind_data1)
    except ZeroDivisionError:
        wind_low = "None"
        wind_high = "None"
        wind_avg = "None"

    # Get the humidity data.
    humi_data = datasets.convert_float(datasets.get_column(data, 5))
    humi_low = min(humi_data)
    humi_high = max(humi_data)
    humi_avg = calculations.mean(humi_data)

    # Get the air pressure data.
    airp_data1, airp_data2 = datasets.split_list(datasets.get_column(data, 6))
    airp_data1 = datasets.convert_float(airp_data1)
    airp_low = min(airp_data1)
    airp_high = max(airp_data1)
    airp_avg = calculations.mean(airp_data1)

    # Get the visibility data.
    visi_data = datasets.convert_float(datasets.get_column(data, 7))
    visi_low = min(visi_data)
    visi_high = max(visi_data)
    visi_avg = calculations.mean(visi_data)

    # Get the cloud cover data.
    clou_data = datasets.split_list3(datasets.get_column(data, 8))
    clou_data1 = Counter(clou_data[0])
    clou_data2 = Counter(datasets.strip_items(clou_data[1], ["(", ")"]))
    clou_data1_counter = clou_data1.most_common(1)[0]
    clou_data2_counter = clou_data2.most_common(1)[0]
    clou_mode1 = clou_data1_counter[0]
    clou_mode1_count = clou_data1_counter[1]
    clou_mode2 = clou_data2_counter[0]
    clou_mode2_count = clou_data2_counter[1]

    # Change any values, if needed.
    prec_low = "None" if prec_low == "None" else ("%.2f %s" %
                                                  (prec_low, units["prec"]))
    prec_high = "None" if prec_high == "None" else ("%.2f %s" %
                                                    (prec_high, units["prec"]))
    prec_avg = "None" if prec_avg == "None" else ("%.2f %s" %
                                                  (prec_avg, units["prec"]))
    wind_low = "None" if wind_low == "None" else ("%.2f %s" %
                                                  (wind_low, units["wind"]))
    wind_high = "None" if wind_high == "None" else ("%.2f %s" %
                                                    (wind_high, units["wind"]))
    wind_avg = "None" if wind_avg == "None" else ("%.2f %s" %
                                                  (wind_avg, units["wind"]))

    # Create the data list.
    data2 = [["First date", "%s" % date_first],
             ["Last date", "%s" % date_last],
             ["Number of days", "%d days" % day_num],
             ["Range of days", "%d days" % date_num],
             ["Lowest temperature",
              "%.2f %s" % (temp_low, units["temp"])],
             ["Highest temperature",
              "%.2f %s" % (temp_high, units["temp"])],
             ["Average temperature",
              "%.2f %s" % (temp_avg, units["temp"])],
             ["Lowest wind chill",
              "%.2f %s" % (chil_low, units["temp"])],
             ["Highest wind chill",
              "%.2f %s" % (chil_high, units["temp"])],
             ["Average wind chill",
              "%.2f %s" % (chil_avg, units["temp"])],
             ["Lowest precipitation", prec_low],
             ["Highest precipitation", prec_high],
             ["Average precipitation", prec_avg],
             ["Lowest wind speed",
              wind_low], ["Highest wind speed", wind_high],
             ["Average wind speed", wind_avg],
             ["Lowest humidity", "%.2f%%" % humi_low],
             ["Highest humidity", "%.2f%%" % humi_high],
             ["Average humidity", "%.2f%%" % humi_avg],
             ["Lowest air pressure",
              "%.2f %s" % (airp_low, units["airp"])],
             ["Highest air pressure",
              "%.2f %s" % (airp_high, units["airp"])],
             ["Average air pressure",
              "%.2f %s" % (airp_avg, units["airp"])],
             ["Lowest visibility",
              "%.2f %s" % (visi_low, units["visi"])],
             ["Highest visibility",
              "%.2f %s" % (visi_high, units["visi"])],
             ["Average visibility",
              "%.2f %s" % (visi_avg, units["visi"])],
             [
                 "Most common cloud cover",
                 "%s (%d occurrences)" % (clou_mode1, clou_mode1_count)
             ],
             [
                 "Most common cloud type",
                 "%s (%d occurrences)" % (clou_mode2, clou_mode2_count)
             ]]

    return data2
Exemplo n.º 30
0
def prec_info(data, units):
    """"Gets the precipitation info."""

    # Get the data.
    num_days = len(data)
    prec_data1, prec_data2 = datasets.split_list(datasets.get_column(data, 3))
    prec_split = datasets.split_list2(datasets.get_column(data, 3))
    prec_data1 = datasets.none_to_zero(prec_data1)
    prec_data1 = datasets.convert_float(prec_data1)
    try:
        prec_low = min(prec_data1)
        prec_high = max(prec_data1)
        prec_avg = calculations.mean(prec_data1)
        prec_median = calculations.median(prec_data1)
        prec_range = calculations.range(prec_data1)
    except ZeroDivisionError:
        prec_low = "None"
        prec_high = "None"
        prec_avg = "None"
        prec_median = "None"
        prec_range = "None"
    prec_total = 0
    prec_total_rain = 0
    prec_total_snow = 0
    prec_total_hail = 0
    prec_total_sleet = 0
    prec_none = 0
    prec_rain = 0
    prec_snow = 0
    prec_hail = 0
    prec_sleet = 0
    for i in prec_split:
        if i[1] != "None":
            prec_total += float(i[0])
        if i[1] == "None":
            prec_none += 1
        elif i[1] == "Rain":
            prec_total_rain += float(i[0])
            prec_rain += 1
        elif i[1] == "Snow":
            prec_total_snow += float(i[0])
            prec_snow += 1
        elif i[1] == "Hail":
            prec_total_hail += float(i[0])
            prec_hail += 1
        elif i[1] == "Sleet":
            prec_total_sleet += float(i[0])
            prec_sleet += 1
    prec_mode, prec_mode_count = calculations.mode(prec_data2)
    if prec_total == 0:
        prec_per_rain = "0%"
        prec_per_snow = "0%"
        prec_per_hail = "0%"
        prec_per_sleet = "0%"
    else:
        prec_per_rain = "%.2f%%" % ((prec_total_rain / prec_total) * 100)
        prec_per_snow = "%.2f%%" % ((prec_total_snow / prec_total) * 100)
        prec_per_hail = "%.2f%%" % ((prec_total_hail / prec_total) * 100)
        prec_per_sleet = "%.2f%%" % ((prec_total_sleet / prec_total) * 100)

    # Change any values, if needed.
    prec_low = "None" if prec_low == "None" else ("%.2f %s" %
                                                  (prec_low, units["prec"]))
    prec_high = "None" if prec_high == "None" else ("%.2f %s" %
                                                    (prec_high, units["prec"]))
    prec_avg = "None" if prec_avg == "None" else ("%.2f %s" %
                                                  (prec_avg, units["prec"]))
    prec_median = "None" if prec_median == "None" else (
        "%.2f %s" % (prec_median, units["prec"]))
    prec_range = "None" if prec_range == "None" else (
        "%.2f %s" % (prec_range, units["prec"]))

    # Create the data list.
    data2 = [
        ["Lowest precipitation",
         prec_low], ["Highest precipitation", prec_high],
        ["Average precipitation", prec_avg],
        ["Median precipitation", prec_median],
        ["Range of precipitation", prec_range],
        ["Total precipitation",
         "%.2f %s" % (prec_total, units["prec"])],
        [
            "Total rain",
            "%.2f %s (%s)" % (prec_total_rain, units["prec"], prec_per_rain)
        ],
        [
            "Total snow",
            "%.2f %s (%s)" % (prec_total_snow, units["prec"], prec_per_snow)
        ],
        [
            "Total hail",
            "%.2f %s (%s)" % (prec_total_hail, units["prec"], prec_per_hail)
        ],
        [
            "Total sleet",
            "%.2f %s (%s)" % (prec_total_sleet, units["prec"], prec_per_sleet)
        ],
        [
            "Days with no precipitation",
            "%d day%s (%.2f%%)" % (prec_none, "" if prec_none == 1 else "s",
                                   (prec_none / num_days) * 100)
        ],
        [
            "Days with rain",
            "%d day%s (%.2f%%)" % (prec_rain, "" if prec_rain == 1 else "s",
                                   (prec_rain / num_days) * 100)
        ],
        [
            "Days with snow",
            "%d day%s (%.2f%%)" % (prec_snow, "" if prec_snow == 1 else "s",
                                   (prec_snow / num_days) * 100)
        ],
        [
            "Days with hail",
            "%d day%s (%.2f%%)" % (prec_hail, "" if prec_hail == 1 else "s",
                                   (prec_hail / num_days) * 100)
        ],
        [
            "Days with sleet",
            "%d day%s (%.2f%%)" % (prec_sleet, "" if prec_sleet == 1 else "s",
                                   (prec_sleet / num_days) * 100)
        ],
        [
            "Most common precipitation type",
            "%s (%d occurrences)" %
            (prec_mode if prec_mode != "" else "None", prec_mode_count)
        ]
    ]

    return data2