Exemplo n.º 1
0
    def test_compute_lifetimes(self):
        num_assets = 4
        env = TradingEnvironment()
        trading_day = env.trading_day
        first_start = pd.Timestamp('2015-04-01', tz='UTC')

        frame = make_rotating_asset_info(
            num_assets=num_assets,
            first_start=first_start,
            frequency=env.trading_day,
            periods_between_starts=3,
            asset_lifetime=5
        )

        env.write_data(equities_df=frame)
        finder = env.asset_finder

        all_dates = pd.date_range(
            start=first_start,
            end=frame.end_date.max(),
            freq=trading_day,
        )

        for dates in all_subindices(all_dates):
            expected_with_start_raw = full(
                shape=(len(dates), num_assets),
                fill_value=False,
                dtype=bool,
            )
            expected_no_start_raw = full(
                shape=(len(dates), num_assets),
                fill_value=False,
                dtype=bool,
            )

            for i, date in enumerate(dates):
                it = frame[['start_date', 'end_date']].itertuples()
                for j, start, end in it:
                    # This way of doing the checks is redundant, but very
                    # clear.
                    if start <= date <= end:
                        expected_with_start_raw[i, j] = True
                        if start < date:
                            expected_no_start_raw[i, j] = True

            expected_with_start = pd.DataFrame(
                data=expected_with_start_raw,
                index=dates,
                columns=frame.index.values,
            )
            result = finder.lifetimes(dates, include_start_date=True)
            assert_frame_equal(result, expected_with_start)

            expected_no_start = pd.DataFrame(
                data=expected_no_start_raw,
                index=dates,
                columns=frame.index.values,
            )
            result = finder.lifetimes(dates, include_start_date=False)
            assert_frame_equal(result, expected_no_start)
Exemplo n.º 2
0
    def test_compute_lifetimes(self):
        num_assets = 4
        trading_day = self.env.trading_day
        first_start = pd.Timestamp('2015-04-01', tz='UTC')

        frame = make_rotating_equity_info(
            num_assets=num_assets,
            first_start=first_start,
            frequency=self.env.trading_day,
            periods_between_starts=3,
            asset_lifetime=5
        )

        self.env.write_data(equities_df=frame)
        finder = self.env.asset_finder

        all_dates = pd.date_range(
            start=first_start,
            end=frame.end_date.max(),
            freq=trading_day,
        )

        for dates in all_subindices(all_dates):
            expected_with_start_raw = full(
                shape=(len(dates), num_assets),
                fill_value=False,
                dtype=bool,
            )
            expected_no_start_raw = full(
                shape=(len(dates), num_assets),
                fill_value=False,
                dtype=bool,
            )

            for i, date in enumerate(dates):
                it = frame[['start_date', 'end_date']].itertuples()
                for j, start, end in it:
                    # This way of doing the checks is redundant, but very
                    # clear.
                    if start <= date <= end:
                        expected_with_start_raw[i, j] = True
                        if start < date:
                            expected_no_start_raw[i, j] = True

            expected_with_start = pd.DataFrame(
                data=expected_with_start_raw,
                index=dates,
                columns=frame.index.values,
            )
            result = finder.lifetimes(dates, include_start_date=True)
            assert_frame_equal(result, expected_with_start)

            expected_no_start = pd.DataFrame(
                data=expected_no_start_raw,
                index=dates,
                columns=frame.index.values,
            )
            result = finder.lifetimes(dates, include_start_date=False)
            assert_frame_equal(result, expected_no_start)
Exemplo n.º 3
0
    def test_compute_lifetimes(self):
        num_assets = 4
        env = TradingEnvironment()
        trading_day = env.trading_day
        first_start = pd.Timestamp('2015-04-01', tz='UTC')

        frame = make_rotating_asset_info(
            num_assets=num_assets,
            first_start=first_start,
            frequency=env.trading_day,
            periods_between_starts=3,
            asset_lifetime=5
        )

        env.write_data(equities_df=frame)
        finder = env.asset_finder

        all_dates = pd.date_range(
            start=first_start,
            end=frame.end_date.max(),
            freq=trading_day,
        )

        for dates in all_subindices(all_dates):
            expected_mask = full(
                shape=(len(dates), num_assets),
                fill_value=False,
                dtype=bool,
            )

            for i, date in enumerate(dates):
                it = frame[['start_date', 'end_date']].itertuples()
                for j, start, end in it:
                    if start <= date <= end:
                        expected_mask[i, j] = True

            # Filter out columns with all-empty columns.
            expected_result = pd.DataFrame(
                data=expected_mask,
                index=dates,
                columns=frame.index.values,
            )

            actual_result = finder.lifetimes(dates)
            assert_frame_equal(actual_result, expected_result)
Exemplo n.º 4
0
    def test_compute_lifetimes(self, env=None):
        num_assets = 4
        trading_day = env.trading_day
        first_start = pd.Timestamp('2015-04-01', tz='UTC')

        frame = make_rotating_asset_info(num_assets=num_assets,
                                         first_start=first_start,
                                         frequency=env.trading_day,
                                         periods_between_starts=3,
                                         asset_lifetime=5)
        finder = AssetFinder(frame)

        all_dates = pd.date_range(
            start=first_start,
            end=frame.end_date.max(),
            freq=trading_day,
        )

        for dates in all_subindices(all_dates):
            expected_mask = full(
                shape=(len(dates), num_assets),
                fill_value=False,
                dtype=bool,
            )

            for i, date in enumerate(dates):
                it = frame[['start_date', 'end_date']].itertuples()
                for j, start, end in it:
                    if start <= date <= end:
                        expected_mask[i, j] = True

            # Filter out columns with all-empty columns.
            expected_result = pd.DataFrame(
                data=expected_mask,
                index=dates,
                columns=frame.sid.values,
            )
            actual_result = finder.lifetimes(dates)
            assert_frame_equal(actual_result, expected_result)