Skip to content
forked from hbldh/pyefd

Python implementation of "Elliptic Fourier Features of a Closed Contour"

License

Notifications You must be signed in to change notification settings

pwichmann/pyefd

 
 

Repository files navigation

PyEFD

image

Documentation Status

image

image

image

An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in1.

Installation

$ pip install pyefd

Usage

Given a closed contour of a shape, generated by e.g. scikit-image or OpenCV, this package can fit a Fourier series approximating the shape of the contour:

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10)

The coefficients returned are the a_n, b_n, c_n and d_n of the following Fourier series representation of the shape.

The coefficients returned are by default normalized so that they are rotation and size-invariant. This can be overridden by calling:

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=False)

Normalization can also be done afterwards:

from pyefd import normalize_efd
coeffs = normalize_efd(coeffs)

To use these as features, one can write a small wrapper function:

def efd_feature(contour):
    coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=True)
    return coeffs.flatten()[3:]

If the coefficients are normalized, then coeffs[0, 0] = 1.0, coeffs[0, 1] = 0.0 and coeffs[0, 2] = 0.0, so they can be disregarded when using the elliptic Fourier descriptors as features.

See2 for more technical details.

Testing

Run tests with:

$ python setup.py test

or with Pytest:

$ py.test tests.py

The tests includes a single image from the MNIST dataset of handwritten digits (3) as a contour to use for testing.

Documentation

See ReadTheDocs.

References


  1. Frank P Kuhl, Charles R Giardina, Elliptic Fourier features of a closed contour, Computer Graphics and Image Processing, Volume 18, Issue 3, 1982, Pages 236-258, ISSN 0146-664X, http://dx.doi.org/10.1016/0146-664X(82)90034-X.

  2. Frank P Kuhl, Charles R Giardina, Elliptic Fourier features of a closed contour, Computer Graphics and Image Processing, Volume 18, Issue 3, 1982, Pages 236-258, ISSN 0146-664X, http://dx.doi.org/10.1016/0146-664X(82)90034-X.

  3. LeCun et al. (1999): The MNIST Dataset Of Handwritten Digits

About

Python implementation of "Elliptic Fourier Features of a Closed Contour"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%