Пример #1
0
 def algorithm_par_mp(self):
     """Subprogram for running parallel version of GA
     Requires MPI4PY"""
     global logger
     comm = MPI.COMM_WORLD
     rank = MPI.COMM_WORLD.Get_rank()
     if rank==0:
         if 'MA' in self.debug:
             debug = True
         else:
             debug = False
         self.algorithm_initialize()
     self.convergence = False
     convergence = False
     while not convergence:
         if rank==0:
             pop = self.population
             offspring = self.generation_set(self,pop)
             # Identify the individuals with an invalid fitness
             invalid_ind = [ind for ind in offspring if ind.energy==0]
             #Evaluate the individuals with invalid fitness
             self.output.write('\n--Evaluate Structures--\n')
         else:
             invalid_ind=[]
         for i in range(len(invalid_ind)):
             if self.fitness_scheme=='STEM_Cost':
                 if self.stem_coeff==None:
                     ind = invalid_ind.pop()
                     from MAST.structopt.tools.StemCalc import find_stem_coeff
                     outs = find_stem_coeff(self,ind)
                     ind = outs[1]
                     self.stem_coeff = outs[0]
                     self.output.write('stem_coeff Calculated to be: '+repr(self.stem_coeff)+'\n')
                     pop.append(ind)
             ind=invalid_ind[i]
             if 'MA' in self.debug: write_xyz(self.debugfile,ind[0],'Individual to fitness_switch')
             outs = switches.fitness_switch([self,ind])
             self.output.write(outs[1])
             invalid_ind[i]=outs[0]
             self.output.flush()
         if rank==0:
             pop.extend(invalid_ind)
             pop = self.generation_eval(pop)
             self.write()
         convergence = comm.bcast(self.convergence, root=0)
     
     if rank==0:
         end_signal = self.algorithm_stats(self.population)
     else:
         end_signal = None
     end_signal = comm.bcast(end_signal, root=0)
     return end_signal    
Пример #2
0
def mutation_dups_adapt_stem(pop, Optimizer):
    """Predator function that removes individuals based on fitness and mutates replacements
    """
    fitlist = [one.fitness for one in pop]
    nfitlist, nindices = remove_duplicates(fitlist, Optimizer.demin)
    STR = ''
    newpop = []
    if len(nfitlist) != len(fitlist):
        STR+='Predator: Removed total of '+repr(len(fitlist)-len(nfitlist))+' from population\n'
    otherlist = []
    for i in range(len(pop)):
        if i not in nindices:
            STR+='Predator: Removed '+repr(pop[i].history_index)+'\n'
            otherlist.append(pop[i])
        else:
            newpop.append(pop[i])
    while len(newpop) < Optimizer.nindiv:
        indiv = random.choice(otherlist).duplicate()
        indiv, scheme = moves_switch(indiv,Optimizer)
        indiv.energy = 1000
        indiv.fitness = 1000
        newpop.append(indiv)
        STR+='Predator: Adding mutated duplicates to new pop history='+indiv.history_index+'\n'
        nindices.append(indiv.index)
    nindices.sort()
    if Optimizer.natural_selection_scheme=='fussf':
        for ind in newpop:
            if ind.fingerprint == 0:
                ind.fingerprint = get_fingerprint(Optimizer,ind,Optimizer.fpbin,Optimizer.fpcutoff)
    if 'lambda,mu' in Optimizer.algorithm_type:
        try:
            mark = [ index for index,n in enumerate(nindices) if n > Optimizer.nindiv-1][0]
        except:
            mark = Optimizer.nindiv
        Optimizer.mark = mark
        pop, str1 = lambdacommamu.lambdacommamu(newpop, Optimizer)
        STR+=str1
    else:
        pop = selection_switch(newpop, Optimizer.nindiv, Optimizer.natural_selection_scheme, Optimizer)
    pop = get_best(pop,len(pop))
    indiv = pop[0]
    if (indiv.fitness/indiv.energy <2.0):
        from MAST.structopt.tools.StemCalc import find_stem_coeff
        outs = find_stem_coeff(Optimizer,indiv)
        ind = outs[1]
        Optimizer.stem_coeff = outs[0]
        STR+='Readjusting STEM Coeff = {0}'.format(Optimizer.stem_coeff))
    return pop, STR
Пример #3
0
 def generation_set(self,pop):
     global logger
     self.calc = tools.setup_calculator(self) #Set up calculator for atomic structures
     #Set up calculator for fixed region calculations
     if self.fixed_region:
         self.static_calc = self.calc #May need to copy this
         self.calc = tools.setup_fixed_region_calculator(self)
     self.output.write('\n-------- Generation '+repr(self.generation)+' --------\n')
     self.files[self.nindiv].write('Generation '+str(self.generation)+'\n')
     if len(pop) == 0:
         logger.info('Initializing structures')
         offspring = self.initialize_structures()
         self.population = offspring
     else:
         for i in range(len(pop)):
             # Reset History index
             pop[i].history_index=repr(pop[i].index)
         # Select the next generation individuals
         offspring = switches.selection_switch(pop, self.nindiv,
                     self.selection_scheme, self)
         # Clone the selected individuals
         offspring=[off1.duplicate() for off1 in offspring]
         # Apply crossover to the offspring
         self.output.write('\n--Applying Crossover--\n')
         cxattempts = 0
         for child1, child2 in zip(offspring[::2], offspring[1::2]):
             if random.random() < self.cxpb:
                 child1,child2 = switches.crossover_switch(child1, child2, self)
                 cxattempts+=2
         self.cxattempts=cxattempts
         #DEBUG: Write first child
         if 'MA' in self.debug: 
             inp_out.write_xyz(self.debugfile,offspring[0][0],'First Child '+
                 repr(offspring[0].history_index))
         # Apply mutation to the offspring
         self.output.write('\n--Applying Mutation--\n')
         mutattempts = []
         muts = []
         for mutant in offspring:
             if random.random() < self.mutpb:
                 if self.mutant_add:
                     mutant = mutant.duplicate()
                 mutant, optsel = switches.moves_switch(mutant,self)
                 mutattempts.append([mutant.history_index,optsel])
                 if self.mutant_add:
                     muts.append(mutant)
         if self.mutant_add:
             offspring.extend(muts)
         self.mutattempts=mutattempts
         #DEBUG: Write first offspring
         if 'MA' in self.debug: 
             inp_out.write_xyz(self.debugfile,muts[0][0],'First Mutant '+\
             repr(muts[0].history_index))
     if 'stem' in self.fitness_scheme:
         if self.stem_coeff==None:
             logger.info('Setting STEM coeff (alpha)')
             ind = offspring.pop()
             from MAST.structopt.tools.StemCalc import find_stem_coeff
             outs = find_stem_coeff(self,ind)
             ind = outs[1]
             ind.fitness = 0
             ind.energy = 0
             self.stem_coeff = outs[0]
             logger.info('STEM Coeff = {0}'.format(self.stem_coeff))
             self.output.write('stem_coeff Calculated to be: '+repr(self.stem_coeff)+'\n')
             offspring.append(ind)
               
     return offspring
Пример #4
0
 def algorithm_par_mp1(self):
     """Subprogram for running parallel version of GA
     Requires MPI4PY"""
     comm = MPI.COMM_WORLD
     rank = MPI.COMM_WORLD.Get_rank()
     if rank==0:
         if 'MA' in self.debug:
             debug = True
         else:
             debug = False
         self.algorithm_initialize()
     self.convergence = False
     convergence = False
     while not convergence:
         if rank==0:
             self.calc = tools.setup_calculator(self) #Set up calculator for atomic structures
             #Set up calculator for fixed region calculations
             if self.fixed_region:
                 self.static_calc = self.calc #May need to copy this
                 self.calc = tools.setup_fixed_region_calculator(self)
             pop = self.population
             offspring = self.generation_set(self,pop)
             # Identify the individuals with an invalid fitness
             invalid_ind = [ind for ind in offspring if ind.energy==0]
             #Evaluate the individuals with invalid fitness
             self.output.write('\n--Evaluate Structures--\n')
             proc_dist = int(comm.Get_size()/self.n_proc_eval)
             ntimes=int(math.ceil(float(len(invalid_ind))/float(proc_dist)))
             nadd=int(ntimes*proc_dist-len(invalid_ind))
             maplist=[[] for n in range(ntimes)]
             strt=0
             for i in range(len(maplist)):
                 maplist[i]=[[self,indi] for indi in invalid_ind[strt:proc_dist+strt]]
                 strt+=proc_dist
             for i in range(nadd):
                 maplist[len(maplist)-1].append([None,None])
             masterlist = [i*self.n_proc_eval for i in range(proc_dist)]
         else:
             ntimes=None
             masterlist = None
         ntimes = comm.bcast(ntimes,root=0)
         outs=[]
         for i in range(ntimes):
             if rank==0:
                 one=maplist[i]
                 for j in range(len(one)):
                     comm.send(ind, dest=1, tag=11)
             elif rank == 1:
                 ind = comm.recv(source=0, tag=11)
             else:
                 one=None
             ind =comm.scatter(one,root=0)
             out = switches.fitness_switch(ind)
         else:
             invalid_ind=[]
         poorlist = []
         for i in range(len(invalid_ind)):
             if self.fitness_scheme=='STEM_Cost':
                 if self.stem_coeff==None:
                     ind = invalid_ind.pop()
                     from MAST.structopt.tools.StemCalc import find_stem_coeff
                     outs = find_stem_coeff(self,ind)
                     ind = outs[1]
                     self.stem_coeff = outs[0]
                     self.output.write('stem_coeff Calculated to be: '+repr(self.stem_coeff)+'\n')
                     pop.append(ind)
             ind=invalid_ind[i]
             if 'MA' in self.debug: write_xyz(self.debugfile,ind[0],'Individual to fitness_switch')
             outs = switches.fitness_switch([self,ind])
             self.output.write(outs[1])
             invalid_ind[i]=outs[0]
             if invalid_ind[i].energy == float('inf'):
                 poorlist.append(i)
                 self.output.write('Removing infinite energy individual '+repr(ind.history_index)+'\n')
             elif invalid_ind[i].energy == float('nan'):
                 poorlist.append(i)
                 self.output.write('Removing nan energy individual '+repr(ind.history_index)+'\n')
             self.output.flush()
         if len(poorlist) != 0:
             poorlist.sort(reverse=True)
             for one in poorlist:
                 del invalid_ind[one]
         if rank==0:
             pop.extend(invalid_ind)
             pop = self.generation_eval(pop)
         convergence = comm.bcast(self.convergence, root=0)
     
     if rank==0:
         end_signal = self.algorithm_stats(self.population)
     else:
         end_signal = None
     end_signal = comm.bcast(end_signal, root=0)
     return end_signal