class ConvergedOutlierDetector:
    def __init__(self, vectors, outz=3.):
        self.vectors = vectors
        self.filteredVec = vectors
        self.outz = outz
        self.trainConvergedDetector()
        
    def trainConvergedDetector(self):
        numVecs = len(self.filteredVec)
        converged = False
        i = 0
        while not converged:
            outdetect = OutlierDetector()
            outdetect.importVectors(self.filteredVec)
            insider = lambda vec: outdetect.isOutlier(vec,
                                                      stdThreshold=self.outz)
            self.filteredVec = filter(insider, self.filteredVec)
            if numVecs == len(self.filteredVec):
                converged = True
            numVecs = len(self.filteredVec)
            i += 1
            #print 'Train ', i, '  # vectors = ', len(self.filteredVec)
        
        self.outDetect = OutlierDetector()
        self.outDetect.importVectors(self.filteredVec)
        
    def transformVec(self, vector):
        return self.outDetect.transformVec(vector)
        
    def normalizeVec(self, vector):
        return self.outDetect.normalizeVec(vector)
        
    def isOutlier(self, vector):
        return self.outDetect.isOutlier(vector, stdThreshold=self.outz)
Пример #2
0
class ConvergedOutlierDetector:
    def __init__(self, vectors, outz=3.):
        self.vectors = vectors
        self.filteredVec = vectors
        self.outz = outz
        self.trainConvergedDetector()

    def trainConvergedDetector(self):
        numVecs = len(self.filteredVec)
        converged = False
        i = 0
        while not converged:
            outdetect = OutlierDetector()
            outdetect.importVectors(self.filteredVec)
            insider = lambda vec: outdetect.isOutlier(vec,
                                                      stdThreshold=self.outz)
            self.filteredVec = filter(insider, self.filteredVec)
            if numVecs == len(self.filteredVec):
                converged = True
            numVecs = len(self.filteredVec)
            i += 1
            #print 'Train ', i, '  # vectors = ', len(self.filteredVec)

        self.outDetect = OutlierDetector()
        self.outDetect.importVectors(self.filteredVec)

    def transformVec(self, vector):
        return self.outDetect.transformVec(vector)

    def normalizeVec(self, vector):
        return self.outDetect.normalizeVec(vector)

    def isOutlier(self, vector):
        return self.outDetect.isOutlier(vector, stdThreshold=self.outz)
 def trainConvergedDetector(self):
     numVecs = len(self.filteredVec)
     converged = False
     i = 0
     while not converged:
         outdetect = OutlierDetector()
         outdetect.importVectors(self.filteredVec)
         insider = lambda vec: outdetect.isOutlier(vec,
                                                   stdThreshold=self.outz)
         self.filteredVec = filter(insider, self.filteredVec)
         if numVecs == len(self.filteredVec):
             converged = True
         numVecs = len(self.filteredVec)
         i += 1
         #print 'Train ', i, '  # vectors = ', len(self.filteredVec)
     
     self.outDetect = OutlierDetector()
     self.outDetect.importVectors(self.filteredVec)
Пример #4
0
    def trainConvergedDetector(self):
        numVecs = len(self.filteredVec)
        converged = False
        i = 0
        while not converged:
            outdetect = OutlierDetector()
            outdetect.importVectors(self.filteredVec)
            insider = lambda vec: outdetect.isOutlier(vec,
                                                      stdThreshold=self.outz)
            self.filteredVec = filter(insider, self.filteredVec)
            if numVecs == len(self.filteredVec):
                converged = True
            numVecs = len(self.filteredVec)
            i += 1
            #print 'Train ', i, '  # vectors = ', len(self.filteredVec)

        self.outDetect = OutlierDetector()
        self.outDetect.importVectors(self.filteredVec)