def post(self): # input in_json_data = request.json departure_time = in_json_data["departure_time"] arrival_time = in_json_data["arrival_time"] buffer_time = in_json_data["buffer_time"] location_flow = in_json_data["location_flow"] mode = in_json_data["mode"] # operation mode_obj = Mode(mode=mode, valid_mode_list=self.mode_list) google_api_obj = GoogleAPI(mode=mode_obj.get_mode(), departure_time=datetime.datetime.now(), buffer_time=buffer_time, location_flow=location_flow, units=None) proc_json_data = google_api_obj.get_google_matrix_api(api_key=self.config_obj.get_api_key_google_matrix()) # output arrival_calculated_date_obj = Utils.convert_str_2_dateobj(departure_time) + \ datetime.timedelta( seconds=proc_json_data["rows"][0]["elements"][0]["duration_in_traffic"]["value"]) + \ datetime.timedelta(hours=buffer_time[0], minutes=buffer_time[1], seconds=buffer_time[2]) arrival_expected_date_obj = Utils.convert_str_2_dateobj(arrival_time) if arrival_calculated_date_obj >= arrival_expected_date_obj: out_json = {"wake_status": True, "journey_duration": proc_json_data["rows"][0]["elements"][0]["duration_in_traffic"]["value"], "estimated_arrival_time": str(arrival_calculated_date_obj)} #"estimated_wakeup_time": str(wakeup_calculated_date_obj)} else: out_json = {"wake_status": False, "journey_duration": proc_json_data["rows"][0]["elements"][0]["duration_in_traffic"]["value"], "estimated_arrival_time": str(arrival_calculated_date_obj)} #"estimated_wakeup_time": str(wakeup_calculated_date_obj)} return out_json
def infer_decisions(self, tree, train_list, parse, prefix_terminals): """ create training data given the label data :param tree: the :param train_list: the list of training examples :param parse: a parse string :param prefix_terminals: the t-1 turn terminal action sequences :return: """ cur_label = Utils.node_label(tree) if type(tree) is not Tree: if len(prefix_terminals) > 0: if cur_label == prefix_terminals[0]: prefix_terminals.remove(cur_label) elif not self.parser.is_dummy(cur_label): print "WHAT!!!" parse.append(cur_label) return parse.append('(') parse.append(cur_label) if len(prefix_terminals) == 0 and cur_label in self.parser.train_set.keys(): children = [Utils.node_label(node) for node in tree] train_list.append({"lhs": cur_label, "rhs": children, 'parse': Utils.clean_parse(' '.join(parse))}) for node in tree: self.infer_decisions(node, train_list, parse, prefix_terminals) parse.append(')')
def do_select(self): empty = True owner = self.owner with owner.lock: owner.read_sockets.clear() owner.write_sockets.clear() owner.error_sockets.clear() owner.update_select_sockets() empty = len(owner.read_sockets) == 0 \ and len(owner.write_sockets) == 0 \ and len(owner.error_sockets) == 0 try: if(empty): time.sleep(owner.timeout) return read, write, error = select.select(owner.read_sockets, owner.write_sockets, owner.error_sockets, owner.timeout) for i in read: owner.do_recv(i) for i in write: owner.do_send(i) for i in error: owner.do_error(i) except Exception as ex: # ThreadInterruptedException # Exception Utils.print_exception(ex)
def log_recv(self, conn, data, offset, size): Utils.expects_type(NaptConnection, conn, 'conn') size2 = size size2 = 256 if size2 > 256 else size2 log = None store_data = data[0:size2] with conn.lock: status = conn.tag protocol= status.protocol_setting c_remote= conn.client.socket.getpeername() c_local = conn.client.socket.getsockname() log = self.create_log(conn.id, 'recv', { 'protocol': protocol.name, 'packet_size': size, 'packet': Utils.get_string_from_bytes(store_data, 'charmap'), 'sha1': hashlib.sha1(store_data).hexdigest(), 'client': { 'remote': { 'address': c_remote[0], 'port': c_remote[1] }, 'local': { 'address': c_local[0], 'port': c_local[1] }, } #'packet': Utils.get_string_from_bytes(data[0:size2], 'ascii') #'packet': Utils.get_escaped_string(data[0:size2]) }) if( (self.elastic != None) and ('Telnet' not in protocol.name) ) : self.append_log(log) self.elastic.store( log )
def log_connected(self, conn): Utils.expects_type(NaptConnection, conn, 'conn') log = None with conn.lock: status = conn.tag protocol= status.protocol_setting c_remote= conn.client.socket.getpeername() c_local = conn.client.socket.getsockname() s_remote= conn.server.socket.getpeername() s_local = conn.server.socket.getsockname() log = self.create_log(conn.id, 'connect', { 'protocol': protocol.name, 'client': { 'remote': { 'address': c_remote[0], 'port': c_remote[1] }, 'local': { 'address': c_local[0], 'port': c_local[1] }, }, 'server': { 'remote': { 'address': s_remote[0], 'port': s_remote[1] }, 'local': { 'address': s_local[0], 'port': s_local[1] } } }) self.append_log(log) if( self.elastic != None ) : self.elastic.store( log )
def main(): projectName=""; dir = ""; groupId=""; counter = 1; if(len(sys.argv) == 2): if(sys.argv[1] == "--help"): Utils.helpOutput(); exit(0); else: for arg in sys.argv [1:]: if (arg == "--projectName"): projectName = sys.argv[counter+1]; elif (arg == "--groupId"): groupId = sys.argv[counter+1]; elif (arg == "--directory"): dir = sys.argv[counter+1]; counter+=1; ScriptMonitor.message("********************************************"); ScriptMonitor.message("Maven Project Builder") ScriptMonitor.message("********************************************"); ScriptMonitor.message("projectName = "+projectName); ScriptMonitor.message("groupId = "+groupId); ScriptMonitor.message("projectDir = "+dir); projectGenerator = ProjectGenerator(); projectGenerator.createProject(dir, projectName, groupId);
def do_stop(self): Utils.assertion(self.lock.locked(), 'need lock') if self.thread is None: raise Exception() # InvalidOperationException() self.running= False
def do_poll(self): empty = True with self.lock: empty = len(self.descripters) == 0 try: if(empty): time.sleep(self.timeout) return status = self.poller.poll(self.timeout) for fd, pollflag in status: flag = (SocketPollFlag.Read if bool(pollflag & select.EPOLLIN) else SocketPollFlag.Zero) \ | (SocketPollFlag.Write if bool(pollflag & select.EPOLLOUT) else SocketPollFlag.Zero) \ | (SocketPollFlag.Error if bool(pollflag & select.EPOLLERR) else SocketPollFlag.Zero) #print(' signaled fd: %d' % fd, flush=True) fd_obj = self.fd_map[fd] self.invoke_callback(fd_obj, flag) except Exception as ex: # ThreadInterruptedException # Exception Utils.print_exception(ex) self.running = False
def run(self): print "Preparing the environment" self.prepareEnvironment() print "Reading in the training data" imageCollections = data_io.get_train_df() wndchrmWorker = WndchrmWorkerTrain() print "Getting features" if not self.loadWndchrm: #Last wndchrm set of features featureGetter = FeatureGetter() fileName = data_io.get_savez_name() if not self.load: #Last features calculated from candidates (namesObservations, coordinates, train) = Utils.calculateFeatures(fileName, featureGetter, imageCollections) else: (namesObservations, coordinates, train) = Utils.loadFeatures(fileName) print "Getting target vector" (indexes, target, obs) = featureGetter.getTargetVector(coordinates, namesObservations, train) print "Saving images" imageSaver = ImageSaver(coordinates[indexes], namesObservations[indexes], imageCollections, featureGetter.patchSize, target[indexes]) imageSaver.saveImages() print "Executing wndchrm algorithm and extracting features" (train, target) = wndchrmWorker.executeWndchrm() else: (train, target) = wndchrmWorker.loadWndchrmFeatures() print "Training the model" model = RandomForestClassifier(n_estimators=500, verbose=2, n_jobs=1, min_samples_split=30, random_state=1, compute_importances=True) model.fit(train, target) print model.feature_importances_ print "Saving the classifier" data_io.save_model(model)
def summaryStatistics(self, network): """ Creates a text file of summary statistics that may be useful to presenting to preliminary meetings with our advisors/sponsors. """ flights = network.countTotalBookedPerFlight() networkData = [sum(flights[key].values()) for key in flights.keys()] networkSeries = pd.Series(networkData).describe() edgeData = {} for flight, data in flights.items(): org_des = flight[2:] edgeData[org_des] = edgeData.get(org_des, []) edgeData[org_des].append(sum(data.values())) with open('ICF_Summary_Statistics.txt', 'w') as f: f.write('Network Summary\n') Utils.writeSeriesToFile(f, networkSeries, indent=' ') f.write('\nRoute Summaries\n\n') for org_des, booked in edgeData.items(): f.write(org_des[0] + ' -> ' + org_des[1] + '\n') statsSeries = pd.Series(booked).describe() Utils.writeSeriesToFile(f, statsSeries, indent=' ') f.write('\n')
def comparator(self, a, b): if len(a) < len(b): return -1 elif len(a) > len(b): return 1 else: return Utils.seqLength(a) - Utils.seqLength(b)
def log_close(self, conn): Utils.expects_type(NaptConnection, conn, 'conn') log = None with conn.lock: log = self.create_log(conn.id, 'close')
def recv(self, so): Utils.expects_type(NaptSocket, so, 'so') if so.is_client: self.recv_client() else: self.recv_server()
def to_row(self): end_time = Utils.datefmt(self.end_time) if self.end_time is not None else "-" start_time = Utils.datefmt(self.start_time) duration = Utils.hourstohuman(self.duration) cwd = self.cwd if hasattr(self, 'cwd') else "-" if not hasattr(self, 'commit_info'): self.commit_info = self.getGitInfo() return ["",start_time,end_time,duration,cwd,self.commit_info]
def timeout(self, conn): Utils.expects_type(NaptConnection, conn, 'conn') status = conn.tag; port = status.PortSetting; protocol = self.protocolt_settings.find(port.default_protocol) self.connect(conn, protocol)
def mergeFiles(self, trainFeaturesFile, testFeaturesFile): (namesObservationsTr, coordinatesTr, train) = Utils.loadFeatures(trainFeaturesFile) (namesObservationsTe, coordinatesTe, test) = Utils.loadFeatures(testFeaturesFile) namesObservations = np.concatenate((namesObservationsTr,namesObservationsTe)) coordinates = np.concatenate((coordinatesTr, coordinatesTe)) dataset = np.concatenate((train, test)) namesObservations = np.reshape(namesObservations, (namesObservations.shape[0],1)) return (namesObservations, coordinates, dataset)
def __init__(self, owner): Utils.expects_type(AutoNapt, owner, 'owner') super().__init__() self.owner = owner SocketPoller.get_instance().idle += self.poller_idle
def main(argv): try: # TypeError: can't set attributes of built-in/extension type 'object' #object.expects = MethodType(expects_type, object) return AutoNapt.main(argv) except Exception as ex: Utils.print_exception(ex) return 1
def test_getitem(self): s = [] self.assertEqual(Utils.getItem(s, 4), None) s = [[30, 70, 80]] self.assertEqual(Utils.getItem(s, 0), 30) s = [[70, 80], [90]] self.assertEqual(Utils.getItem(s, Utils.seqLength(s)-1), 90)
def do_close(self): #Utils.assertion(self.lock.locked(), 'need lock') self.status = NaptSocketStatus.Closed try: self.socket.close() # non-blocking except Exception as ex: Utils.print_exception(ex)
def __init__(self, port_setting): Utils.expects_type(PortSetting, port_setting, 'port_setting') self.connecting = False self.connected = False self.port_setting = port_setting self.protocol_setting = None self.create_time = datetime.datetime.now() self.timoput_time = self.create_time
def getImageFromName(self, name): for imageCollection in self.imageCollections: index = 0 newName = Utils.getPrettyName(name) for image in imageCollection.files: if Utils.getPrettyName(image) == newName: return imageCollection[index] index += 1 return None
def routeQueries(self, newList, segmentRunningCount, time): self.queryList.extend(newList) self.log("Routing Queries") (routinglist, self.queryList) = self.findRoutableQueries(self.queryList, self.historicalNodeList) if len(routinglist) > 0: Utils.printQueryList(routinglist) Broker.routeQueries(routinglist, self.historicalNodeList, self.routingStrategy, segmentRunningCount, time) Utils.printQueryAssignment(self.historicalNodeList)
class ClasifierTester: def __init__(self): self.util = Utils() def createDataset(self, inputData): data = ClassificationDataSet(100,nb_classes=len(inputData.keys()), class_labels=inputData.keys()) allTheLetters = string.uppercase for i in range(300): for letter in inputData.keys(): data.addSample(inputData[letter], allTheLetters.index(letter)) data._convertToOneOfMany([0,1]) return data def checkIfCorrect(self, result, correctAnswer): maximum = result[0] maximumIndex = 0 allTheLetters = string.uppercase for i in range(len(result)): if result[i] > maximum: maximum = result[i] maximumIndex = i return allTheLetters.index(correctAnswer) == maximumIndex def testWithGivenModificationFunction(self, trained, inputData, letter, removalRange, removalFunction): testRange = 100 avarageSum = 0 wasFailed = False for d in range(testRange): for i in range(int(removalRange)): if not self.checkIfCorrect(trained.activate(removalFunction(i, inputData[letter])), letter): # print "Fail with value i: "+str(i) avarageSum = avarageSum + i wasFailed = True break if wasFailed: return avarageSum/testRange else: return 100 def testWithRemovedVerticalLine(self, trained, inputData, letter): sizeSqrt = math.sqrt(len(inputData[letter])) avarageSum = sizeSqrt for i in range(int(sizeSqrt)): if not self.checkIfCorrect(trained.activate(self.util.removeLineVerticaly(i, inputData[letter])), letter): avarageSum = avarageSum - 1 return 100*avarageSum/sizeSqrt def testWithRemovedHorizontalLine(self, trained, inputData, letter): sizeSqrt = math.sqrt(len(inputData[letter])) avarageSum = sizeSqrt for i in range(int(sizeSqrt)): if not self.checkIfCorrect(trained.activate(self.util.removeLineHorizontal(i, inputData[letter])), letter): avarageSum = avarageSum - 1 return 100*avarageSum/sizeSqrt
def do_start(self): Utils.assertion(self.lock.locked(), 'need lock') if self.thread is not None: raise Exception() # InvalidOperationException() self.thread = threading.Thread(target = self.run, name = self.__class__.__name__) self.running= True self.thread.start()
def connect(self, endpoint): Utils.assertion(self.lock.locked(), 'need lock') if self.is_connecting: raise Exception() # InvalidOperationException self.is_connecting = True self.server.status = NaptSocketStatus.Connecting threading.Thread(target = self.do_connect, args = (endpoint,), name = self.__class__.__name__).start()
def _event_handler_1(self, partitionFiles, _timestamp, _source): '\n Method invoked when Master assigns work to this process\n ' time.sleep(2) self.myPrint('Received partition split files: ' + (str(partitionFiles))) outputFile = self.outputDir + (str(time.time()).replace('.', '')) + ('_output_') + (str(self._id._address[1])) + ('.txt') (result, countReduceCalls, countSkippedRecords) = self.Reduce(partitionFiles) self.myPrint('writing result to ' + (outputFile)) Utils.writeResult(result, outputFile, 'wb') if ((not testFaultTolerance) or (self._id._address[1] % (3) == 0)): self.send(('ReportReduceWork', outputFile, countReduceCalls, countSkippedRecords), _source)
def add_part(self): Utils.assertion(self.lock.locked(), 'need lock') part = NaptListenerPart(self.bindaddr) part.accepted += self.part_accepted self.parts.append(part) return part
def MSCandidateGenSPM(self, F): logging.debug('MSCandidateGenSPM: %s', F) cs = [] for s1 in F: for s2 in F: if self.MS[s1[0][0]] == self.getStrictlyMinimumMIS(s1): if (Utils.removeItem(s1, 1) == Utils.removeItem(s2, Utils.seqLength(s2)-1)) and (self.MS[s2[-1][-1]] >= self.MS[s1[0][0]]): #TODO: need to check why >= here? nc = self.extendSequence(s1, s2, MSCandidateJoinCriteria.FORWARD) for c in nc: cs.append(c) logging.debug('join: %s %s -> %s %d', s1, s2, c, MSCandidateJoinCriteria.FORWARD) elif self.MS[s2[-1][-1]] == self.getStrictlyMinimumMIS(s2): if (Utils.removeItem(s2, Utils.seqLength(s2)-2) == Utils.removeItem(s1, 0)) and (self.MS[s1[0][0]] > self.MS[s2[-1][-1]]): nc = self.extendSequence(s1, s2, MSCandidateJoinCriteria.REVERSE) for c in nc: cs.append(c) logging.debug('join: %s %s -> %s %d', s1, s2, c, MSCandidateJoinCriteria.REVERSE) else: if Utils.removeItem(s1, 0) == Utils.removeItem(s2, Utils.seqLength(s2)-1): nc = self.extendSequence(s1, s2, MSCandidateJoinCriteria.APRIORI) for c in nc: cs.append(c) logging.debug('join: %s %s -> %s %d', s1, s2, c, MSCandidateJoinCriteria.APRIORI) return [c for c in cs if self.canPrune(c) is False]
def readDependencyFile(): lines = FileController.readFileAndReturnLines("local/dependencies.txt"); dependencyString = ""; for e in lines [1:]: dependencyString += "<dependency>\n"+Utils.tabs(3); record = e.split(","); dependencyString += "<artifactId>"+record[0]+"</artifactId>\n"+Utils.tabs(3); dependencyString += "<groupId>"+record[1]+"</groupId>\n"+Utils.tabs(3); dependencyString += "<version>"+record[2].strip()+"</version>\n"+Utils.tabs(2); dependencyString += "</dependency>\n"+Utils.tabs(2); return dependencyString;
request.add_query_param('Value', ip) response = client.do_action_with_exception(request) return response else: return "ip not change" if __name__ == "__main__": parser = argparse.ArgumentParser(description='DDNS') parser.add_argument('-6', '--ipv6', nargs='*', default=False) args = parser.parse_args() isipv6 = isinstance(args.ipv6, list) while True: try: while not Utils.isOnline(): time.sleep(3) continue result = DDNS(isipv6) if result == "ip not change": print("ip未变动") else: print("成功!") except (ServerException, ClientException) as reason: print("失败!原因为") print(reason.get_error_msg()) print( "可参考:https://help.aliyun.com/document_detail/29774.html?spm=a2c4g.11186623.2.20.fDjexq#%E9%94%99%E8%AF%AF%E7%A0%81" ) print("或阿里云帮助文档") time.sleep(config.update_freq)
def listener(*messages): for m in messages: m = m[0] cid = m.chat.id if m.content_type == "text": text = m.text.strip().replace("\n", "") if text == "❌" and cid in last_utterance: corrections[cid] = True cbot.send_message( cid, "Ok, then give me a valid example for your last utterance: " + last_utterance[cid]) else: if cid in corrections and corrections[cid]: fx = open("new_samples_x.txt", "a") fy = open("new_samples_y.txt", "a") fx.write(last_utterance[cid] + "\n") fy.write(text + " EOF\n") fx.close() fy.close() del corrections[cid] cbot.send_message( cid, "Supervised sample: " + str(last_utterance[cid]) + " - " + str(text)) cbot.send_message( cid, "The new sample could be considered for re-training, thanks (heart)" ) samples_x.append(last_utterance[cid]) samples_y.append(text) else: text = text + " EOF" last_utterance[cid] = text test_sample = to_categorical( tokenizer.texts_to_sequences([text])[0], max_word_index + 2) if reverse: test_sample = u.reverse_input(test_sample) res = s2s.decode_one_hot(test_sample, seq2seq_model, reverse_index, max_word_index) cbot.send_message(cid, res) else: cbot.send_message(cid, "That content is not allowed") if len(samples_x) >= RETRAINING_SAMPLES: retrain_sample_x = tokenizer.texts_to_sequences(samples_x) retrain_sample_y = tokenizer.texts_to_sequences(samples_y) resample_weights = u.get_samples_weight(retrain_sample_y, MAX_LEN_OUTPUT) retrain_sample_y = u.padding_output_one_hot( retrain_sample_y, max_word_index, MAX_LEN_OUTPUT).tolist() retrain_sample_x, retrain_sample_y = u.samples_to_categorical( retrain_sample_x, retrain_sample_y, max_word_index) # Erase content of files # for i in range(len(retrain_sample_x)): if samples_x != "" and samples_y != "": # Reentrenar el modelo # print(retrain_sample_x[i].shape) print(retrain_sample_y[i].shape) print(resample_weights[i].shape) seq2seq_model.fit(np.array([retrain_sample_x[i]]), np.array([retrain_sample_y[i]]), nb_epoch=10, sample_weight=np.array( [resample_weights[i]])) seq2seq_model.save("cleverbot_7_en.h5") with open("new_samples_x.txt", "w"): pass with open("new_samples_y.txt", "w"): pass for i in range(len(samples_x)): samples_x.pop(0) samples_y.pop(0)
def app_one_hot_one_hot(x_train_file, y_train_file, reverse, MAX_LEN_OUTPUT, MAX_LENGTH_SENTS): input_embeddings = False output_embeddings = False x_train, y_train = u.load_samples( x_train_file, y_train_file, input_embeddings, MAX_LENGTH_SENTS) # x_train_cleverbot.txt # x_train, y_train, max_word_index, reverse_index, tokenizer = u.one_hot_one_hot_representation( x_train, y_train) sample_weights = u.get_samples_weight(y_train, MAX_LEN_OUTPUT) y_train = u.padding_output_one_hot(y_train, max_word_index, MAX_LEN_OUTPUT).tolist() x_train, y_train = u.samples_to_categorical(x_train, y_train, max_word_index) if reverse: x_train = u.reverse_input(x_train) buckets_x, buckets_y, buckets_w = u.bucketing(x_train, y_train, sample_weights) seq2seq_model = s2s.get_seq2seq_model_one_hot(max_word_index + 2, max_word_index + 2, MAX_LEN_OUTPUT) #for i in range(1): # Train # # print(i) # for j in buckets_x.keys(): # hist = seq2seq_model.fit(buckets_x[j], buckets_y[j], sample_weight=buckets_w[j], nb_epoch=1, verbose=True) #seq2seq_model.save("cleverbot_7_en.h5") seq2seq_model = load_model("cleverbot_7_en.h5") print("All loaded.") TOKEN = 'TOKEN' cbot = telebot.TeleBot(TOKEN) corrections = {} last_utterance = {} RETRAINING_SAMPLES = 2 samples_x, samples_y = load_new_samples("new_samples_x.txt", "new_samples_y.txt") def listener(*messages): for m in messages: m = m[0] cid = m.chat.id if m.content_type == "text": text = m.text.strip().replace("\n", "") if text == "❌" and cid in last_utterance: corrections[cid] = True cbot.send_message( cid, "Ok, then give me a valid example for your last utterance: " + last_utterance[cid]) else: if cid in corrections and corrections[cid]: fx = open("new_samples_x.txt", "a") fy = open("new_samples_y.txt", "a") fx.write(last_utterance[cid] + "\n") fy.write(text + " EOF\n") fx.close() fy.close() del corrections[cid] cbot.send_message( cid, "Supervised sample: " + str(last_utterance[cid]) + " - " + str(text)) cbot.send_message( cid, "The new sample could be considered for re-training, thanks (heart)" ) samples_x.append(last_utterance[cid]) samples_y.append(text) else: text = text + " EOF" last_utterance[cid] = text test_sample = to_categorical( tokenizer.texts_to_sequences([text])[0], max_word_index + 2) if reverse: test_sample = u.reverse_input(test_sample) res = s2s.decode_one_hot(test_sample, seq2seq_model, reverse_index, max_word_index) cbot.send_message(cid, res) else: cbot.send_message(cid, "That content is not allowed") if len(samples_x) >= RETRAINING_SAMPLES: retrain_sample_x = tokenizer.texts_to_sequences(samples_x) retrain_sample_y = tokenizer.texts_to_sequences(samples_y) resample_weights = u.get_samples_weight(retrain_sample_y, MAX_LEN_OUTPUT) retrain_sample_y = u.padding_output_one_hot( retrain_sample_y, max_word_index, MAX_LEN_OUTPUT).tolist() retrain_sample_x, retrain_sample_y = u.samples_to_categorical( retrain_sample_x, retrain_sample_y, max_word_index) # Erase content of files # for i in range(len(retrain_sample_x)): if samples_x != "" and samples_y != "": # Reentrenar el modelo # print(retrain_sample_x[i].shape) print(retrain_sample_y[i].shape) print(resample_weights[i].shape) seq2seq_model.fit(np.array([retrain_sample_x[i]]), np.array([retrain_sample_y[i]]), nb_epoch=10, sample_weight=np.array( [resample_weights[i]])) seq2seq_model.save("cleverbot_7_en.h5") with open("new_samples_x.txt", "w"): pass with open("new_samples_y.txt", "w"): pass for i in range(len(samples_x)): samples_x.pop(0) samples_y.pop(0) cbot.set_update_listener(listener) cbot.polling() print("Processing messages..") while True: pass
for i in range(0, 10): results_stanford = [] results_stanford_social = [] results_stanford_social_ours = [] results_radiation = [] results_radiation_social = [] results_radiation_social_ours = [] results_only_social = [] dataset = datasets[user] by_days = Utils.separate_dataset_by_days({user: dataset}) dataset = by_days[user]["Monday"] + by_days[user]["Tuesday"] + by_days[ user]["Wednesday"] + by_days[user]["Thursday"] random.shuffle(dataset) combinations = Utils.break_dataset_in_folds(dataset, 5) for combination in combinations: social_model_stanford = CorrectSocialModelStanford() if user in network: social_model_ours = SimpleSocialModel(datasets, network[user], user) train = combination['train']
def alhood(self, a, ss, D, K): factor = Utils.log_gamma(K * a) - Utils.log_gamma(a) return D * factor + (a - 1) * ss
def d_alhood(self, a, ss, D, K): factor = (K * Utils.di_gamma(K * a) - K * Utils.di_gamma(a)) return D * factor + ss
def skip_white_spaces(self): if (self.cur_pos < len(self.input)): while (Utils.is_white_space(self.input[self.cur_pos])): self.cur_pos += 1 if (self.cur_pos >= len(self.input)): break
"type": 'file', "arg": f'open|{m["path"]}', "mods": { "cmd": { "arg": f'show_actions|[{m["path"]}, {query}]', "subtitle": "Press <Enter> to select your next action" } }, "quicklookurl": m["path"] }) Display.show(items) if __name__ == "__main__": query = U.get_query(lower=True) search_type = U.get_search_type() if search_type == 'normal': show_notes() elif search_type == 'markdown_links': show_markdown_links() elif search_type == 'backlinks': show_backlinks() elif search_type == 'snippet': show_snippets() else: Display.show("Error!")
from Utils import Utils isa, _, _ = Utils.parse_isa('data/ISA-am-op.csv') with open('data/curr_ir.gtkw', 'w+') as ofile: for opcode, am, op in isa: ofile.write ('{0:08b} {1}_{2}\n'.format(opcode, Utils.simplify_name(op), Utils.simplify_name(am)))
def test_battlearea_returns_correct_result(self): width,heigth,battleShipsArr1,battleShipsArr2,targetsForPlayer1,targetsForPlayer2 = Utils.parse('../input/input.txt') winStatus = Player.startGame(width,heigth,battleShipsArr1,battleShipsArr2,targetsForPlayer1,targetsForPlayer2) self.assertEqual(winStatus, True)
from Utils import Utils # this code runs classification #file = "/data/kld/temp/Website-Fingerprinting-Glove/WF-BiDirection-PCA-Glove-OSAD-DL/cache/datafile-p2b5adhuk100.c100.d5.C23.N101.t60.T30.D1.E1.F1.G1.H1.I1.B16.J8.K300.L0.05.M100.A1.V0.P0.G0.l0.0.b1.u5000.arff" file = "/data/kld/temp/Website-Fingerprinting-Glove/WF-BiDirection-PCA-Glove-OSAD-DL/cache/datafile-t3xdpn06k100.c200.d5.C23.N101.t60.T30.D1.E1.F1.G1.H1.I1.B16.J8.K300.L0.05.M100.A1.V0.P0.G0.l0.0.b1.u5000.arff" classifier = "svm" kwargs = {} kwargs['C'] = 131072 kwargs['kernel'] = 'rbf' kwargs['gamma'] = 0.0000019073486328125 folds = 10 #outputFilename = "/data/kld/temp/Website-Fingerprinting-Glove/WF-BiDirection-PCA-Glove-OSAD-DL/output/results.k100.c0.d5.C23.N101.t60.T30.D1.E1.F1.G1.H1.I1.A1.V0.P0.g0.l0.b600.u5000.cv10" outputFilename = "/data/kld/temp/Website-Fingerprinting-Glove/WF-BiDirection-PCA-Glove-OSAD-DL/output/results.k100.c200.d5.C23.N101.t60.T30.D1.E1.F1.G1.H1.I1.A1.V0.P0.g0.l0.b1.u5000.cv10" [accuracy,debugInfo] = classifiers.wekaAPI.executeSklearnCrossValidation(file, classifier, folds, **kwargs) print "acc" + str(accuracy) print debugInfo positive = [] # monitored negative = [] # non-monitored positive.append(config.binaryLabels[0]) # 'webpageMon' negative.append(config.binaryLabels[1]) # 'webpageNonMon' Utils.calcTPR_FPR(debugInfo, outputFilename, positive, negative)
filename = input('Enter the directory where contains coefficients files:') gain = int(input('Enter Gain:')) lowcut = int(input('Enter low frequency:')) highcut = int(input('Enter high frequency:')) ffs = [10] # frequencies of the signal Ts = 1.0/FilterConstant.sample_rate sineInterval = arange(0, 1 ,Ts) # time vector # Create square wave parameters squareInterval = linspace(0, 1, FilterConstant.sample_rate, endpoint=False) #------------------------------------------------ # Dependant classes #------------------------------------------------ util = Utils(gain, FilterConstant.sample_rate, FilterConstant.qfactor) plotsignal = PlotSignal(gain, FilterConstant.sample_rate, FilterConstant.qfactor, lowcut, highcut) taps, taps_len = util.generateTaps(filename) rmsFilter = RmsFilter(FilterConstant.sample_rate, FilterConstant.window_size) #------------------------------------------------ # Main starts here #------------------------------------------------ # Plot the FIR filter coefficients and # the magnitude response of the filter. #------------------------------------------------ plotsignal.plotFilter(taps) #------------------------------------------------ # Generate signals before and after
def _set_estimated_finish(self, start_time): self.estimated_finish = start_time + Utils.exponential_distribution(self.service_rate)
def recognize_number(self): symbol = self.input[self.cur_pos] lookahead = self.input[self.cur_pos + 1] if self.cur_pos + 1 < len( self.input) else Utils.null_char() self.cur_pos += 1 self.cur_column += 1 if ((not Utils.is_null_char(lookahead) and symbol == "." and Utils.is_letter(lookahead)) or Utils.is_null_char(lookahead) and symbol == "."): return Token(TokenType.DOT, ".", self.cur_pos, self.cur_column) whole_number = "" + symbol previous_symbol = symbol while(self.cur_pos < len(self.input) and not Utils.is_white_space(self.input[self.cur_pos]) and not Utils.is_newline(self.input[self.cur_pos]) \ and (not Utils.is_operator(self.input[self.cur_pos]) or (self.input[self.cur_pos] == "-") or (self.input[self.cur_pos] == "+")) and \ not Utils.is_delimeter(self.input[self.cur_pos]) ): cur_symbol = self.input[self.cur_pos] if ((cur_symbol == "+" or cur_symbol == "-") and not (previous_symbol == "e" or previous_symbol == "E")): break whole_number += cur_symbol previous_symbol = cur_symbol self.cur_pos += 1 self.cur_column += 1 is_scientific = False is_decimal = False for i in range(len(whole_number)): cur_symbol = whole_number[i] if (cur_symbol == "." and not is_decimal): is_decimal = True continue elif (cur_symbol == "." and is_decimal): raise SyntaxError( "Too many .'s. Unrecognized number literal: " + whole_number + " on line: " + str(self.cur_line)) if ((cur_symbol == "e" or cur_symbol == "E") and not is_scientific and i != len(whole_number) - 1): is_scientific = True continue elif ((cur_symbol == "e" or cur_symbol == "E") and is_scientific): raise SyntaxError( "Too many e's. Unrecognized number literal: " + whole_number + " on line: " + str(self.cur_line)) if (is_scientific and (cur_symbol == "-" or cur_symbol == "+")): continue if (not Utils.is_digit(cur_symbol)): raise SyntaxError("Unrecognized number literal: " + whole_number + " on line: " + str(self.cur_line)) if (is_scientific or is_decimal): return Token(TokenType.DECIMAL, float(whole_number), self.cur_line, self.cur_pos) return Token(TokenType.INTEGER, int(whole_number), self.cur_line, self.cur_pos)
def recognize_operator(self): symbol = self.input[self.cur_pos] lookahead = self.input[self.cur_pos + 1] if self.cur_pos + 1 < len( self.input) else Utils.null_char() column = self.cur_column if (not Utils.is_null_char(lookahead) and (lookahead == "=" or lookahead == "&" or lookahead == "|" or lookahead == "-" or lookahead == "+")): self.cur_pos += 1 self.cur_column += 1 self.cur_pos += 1 self.cur_column += 1 if (symbol == "="): return \ Token(TokenType.DOUBLE_EQUAL, "==", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.EQUAL, "=", self.cur_line, self.cur_column) elif (symbol == "%"): return \ Token(TokenType.MODULO_EQUAL, "%=", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.MODULO, "%", self.cur_line, self.cur_column) elif (symbol == "*"): return \ Token(TokenType.TIMES_EQUAL, "*=", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.TIMES, "*", self.cur_line, self.cur_column) elif (symbol == ">"): return \ Token(TokenType.GREATER_OR_EQUAL, ">=", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.GREATER, ">", self.cur_line, self.cur_column) elif (symbol == "!"): return \ Token(TokenType.NOT_EQUAL, "!=", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.NOT, "!", self.cur_line, self.cur_column) elif (symbol == "~"): return \ Token(TokenType.TILDE_EQUAL, "~=", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.TILDE, self.cur_line, self.cur_column) elif (symbol == "$"): return \ Token(TokenType.DOLLAR_EQUAL, "$=", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.DOLLAR, "$", self.cur_line, self.cur_column) elif (symbol == "^"): return \ Token(TokenType.CARET_EQUAL, "^=", self.cur_line, self.cur_column) \ if (not Utils.is_null_char(lookahead) and lookahead == "=") else \ Token(TokenType.CARET, "^", self.cur_line, self.cur_column) elif (symbol == "&"): if (not Utils.is_null_char(lookahead) and lookahead == "&"): return Token(TokenType.AND, "&&", self.cur_line, column) raise SyntaxError("Unrecognized token: " + symbol + " on line: " + str(self.cur_line)) elif (symbol == "|"): if (not Utils.is_null_char(lookahead) and lookahead == "|"): return Token(TokenType.OR, "||", self.cur_line, column) raise SyntaxError("Unrecognized token: " + symbol + " on line: " + str(self.cur_line)) elif (symbol == "+"): if (not Utils.is_null_char(lookahead)): if (lookahead == "="): return Token(TokenType.PLUS_EQUAL, "+=", self.cur_line, self.cur_column) if (lookahead == "+"): return Token(TokenType.PLUS_PLUS, "++", self.cur_line, self.cur_column) return Token(TokenType.PLUS, "+", self.cur_line, self.cur_column) elif (symbol == "/"): if (not Utils.is_null_char(lookahead)): if (lookahead == "="): return Token(TokenType.DIV_EQUAL, "/=", self.cur_line, column) if (lookahead != "=" and lookahead != "/" and lookahead != "*"): return Token(TokenType.DIV, "/", self.cur_line, column) if (lookahead == "/"): self.cur_pos += 1 return Token(TokenType.INTEGER_DIV, "//", self.cur_line, column) if (lookahead == "*"): self.skip_until_multi_comment_end() return self.next_token() if (Utils.is_null_char(lookahead)): return Token(TokenType.DIV, "/", self.cur_line, column) raise SyntaxError("Unrecognized token: " + symbol + " on line: " + str(self.cur_line)) elif (symbol == "<"): if (not Utils.is_null_char(lookahead)): if (lookahead != "=" and lookahead != "-"): return Token(TokenType.LESS, "<", self.cur_line, column) if (lookahead == "="): return Token(TokenType.LESS_OR_EQUAL, "<=", self.cur_line, column) if (lookahead == "-"): return Token(TokenType.LEFT_ARROW, "<-", self.cur_line, column) if (Utils.is_null_char(lookahead)): return Token(TokenType.LESS, self.cur_line, column) raise SyntaxError("Unrecognized token: " + symbol + " on line: " + str(self.cur_line)) elif (symbol == "-"): if (not Utils.is_null_char(lookahead)): if (lookahead == "="): return Token(TokenType.MINUS_EQUAL, "-=", self.cur_line, column) if (lookahead == ">"): return Token(TokenType.RIGHT_ARROW, "->", self.cur_line, column) else: if (lookahead == "-"): return Token(TokenType.MINUS_MINUS, "--", self.cur_line, column) if (Utils.is_null_char(lookahead) or (lookahead != "=" and lookahead != ">")): return Token(TokenType.MINUS, "-", self.cur_line, column) raise SyntaxError("Unrecognized token: " + symbol + " on line: " + str(self.cur_line)) else: raise SyntaxError("Unrecognized token: " + symbol + " on line: " + str(self.cur_line))
def __init__(self): self.utils = Utils() self.vehicle = None self.pyclean() self.cmd = None
def getPrice(self, timeIndex): index = timeIndex % 96 price = Utils.priceByTime(index) return price
def d2_alhood(self, a, D, K): factor = (K * K * Utils.tri_gamma(K * a) - K * Utils.tri_gamma(a)) return D * factor
def varibles_checked(): all_set = True # Check validity of Workflow env variables for env in ["markdown_app", "files_path", "notes_path"]: if not U.get_env(env): Display.show(("ERROR: Find empty environt varibles!", f"Please check: \"{env}\".")) all_set = False for path in U.get_env("files_path").split(","): if not (U.path_exists(U.get_abspath(path))): Display.show(("ERROR: Find invalid directory!", f"Please check \"files_path\": {path}")) all_set = False if not U.get_env("notes_path"): Display.show( ("ERROR: Find invalid directory!", "Please check \"notes_path\"")) all_set = False # Check validity of config file if not U.path_exists(Config.CONFIG_DIR): U.mkdir(Config.CONFIG_DIR) if not U.path_exists(Config.CONFIG_PATH): Config.Config.reset_all() else: try: Config.Config._load_all() except Exception as e: U.output(f'error|[search, {e}]') #TODO: reset all config/go check? all_set = False return all_set
def plot_input(self, var, n_bins, out_label, ratio_plot=False, norm_to_data=False): if ratio_plot: plt.rcParams.update({'figure.figsize':(6,5.8)}) fig, axes = plt.subplots(nrows=2, ncols=1, dpi=200, sharex=True, gridspec_kw ={'height_ratios':[3,0.8], 'hspace':0.08}) ratio = axes[1] axes = axes[0] else: fig = plt.figure(1) axes = fig.gca() bkg_stack = [] bkg_w_stack = [] bkg_proc_stack = [] var_sig = self.sig_df[var].values sig_weights = self.sig_df['weight'].values for bkg in self.bkg_labels: var_bkg = self.bkg_df[self.bkg_df.proc==bkg][var].values bkg_weights = self.bkg_df[self.bkg_df.proc==bkg]['weight'].values bkg_stack.append(var_bkg) bkg_w_stack.append(bkg_weights) bkg_proc_stack.append(bkg) if self.normalise: sig_weights /= np.sum(sig_weights) bkg_weights /= np.sum(bkg_weights) #FIXME: set this up for multiple bkgs bins = np.linspace(self.var_to_xrange[var][0], self.var_to_xrange[var][1], n_bins) #add sig mc axes.hist(var_sig, bins=bins, label=self.sig_labels[0]+r' ($\mathrm{H}\rightarrow\mathrm{ee}$) '+self.num_to_str(self.sig_scaler), weights=sig_weights*(self.sig_scaler), histtype='step', color=self.sig_colour, zorder=10) #data data_binned, bin_edges = np.histogram(self.data_df[var].values, bins=bins) bin_centres = (bin_edges[:-1] + bin_edges[1:])/2 x_err = (bin_edges[-1] - bin_edges[-2])/2 data_down, data_up = self.poisson_interval(data_binned, data_binned) axes.errorbar( bin_centres, data_binned, yerr=[data_binned-data_down, data_up-data_binned], label='Data', fmt='o', ms=4, color='black', capsize=0, zorder=1) #add stacked bkg if norm_to_data: rew_stack = [] k_factor = np.sum(self.data_df['weight'].values)/np.sum(self.bkg_df['weight'].values) for w_arr in bkg_w_stack: rew_stack.append(w_arr*k_factor) axes.hist(bkg_stack, bins=bins, label=bkg_proc_stack, weights=rew_stack, histtype='stepfilled', color=self.bkg_colours[0:len(bkg_proc_stack)], log=self.log_axis, stacked=True, zorder=0) bkg_stack_summed, _ = np.histogram(np.concatenate(bkg_stack), bins=bins, weights=np.concatenate(rew_stack)) sumw2_bkg, _ = np.histogram(np.concatenate(bkg_stack), bins=bins, weights=np.concatenate(rew_stack)**2) else: axes.hist(bkg_stack, bins=bins, label=bkg_proc_stack, weights=bkg_w_stack, histtype='stepfilled', color=self.bkg_colours[0:len(bkg_proc_stack)], log=self.log_axis, stacked=True, zorder=0) bkg_stack_summed, _ = np.histogram(np.concatenate(bkg_stack), bins=bins, weights=np.concatenate(bkg_w_stack)) sumw2_bkg, _ = np.histogram(np.concatenate(bkg_stack), bins=bins, weights=np.concatenate(bkg_w_stack)**2) if self.normalise: axes.set_ylabel('Arbitrary Units', ha='right', y=1, size=13) else: axes.set_ylabel('Events', ha='right', y=1, size=13) #plot mc error bkg_std_down, bkg_std_up = self.poisson_interval(bkg_stack_summed, sumw2_bkg) axes.fill_between(bins, list(bkg_std_down)+[bkg_std_down[-1]], list(bkg_std_up)+[bkg_std_up[-1]], alpha=0.3, step="post", color="grey", lw=1, zorder=4, label='Simulation stat. unc.') #change axes limits current_bottom, current_top = axes.get_ylim() axes.set_ylim(bottom=10, top=current_top*1.35) #axes.set_xlim(left=self.var_to_xrange[var][0], right=self.var_to_xrange[var][1]) axes.legend(bbox_to_anchor=(0.97,0.97), ncol=2) self.plot_cms_labels(axes) var_name_safe = var.replace('_',' ') if ratio_plot: ratio.errorbar(bin_centres, (data_binned/bkg_stack_summed), yerr=[ (data_binned-data_down)/bkg_stack_summed, (data_up-data_binned)/bkg_stack_summed], fmt='o', ms=4, color='black', capsize=0) bkg_std_down_ratio = np.ones_like(bkg_std_down) - ((bkg_stack_summed - bkg_std_down)/bkg_stack_summed) bkg_std_up_ratio = np.ones_like(bkg_std_up) + ((bkg_std_up - bkg_stack_summed)/bkg_stack_summed) ratio.fill_between(bins, list(bkg_std_down_ratio)+[bkg_std_down_ratio[-1]], list(bkg_std_up_ratio)+[bkg_std_up_ratio[-1]], alpha=0.3, step="post", color="grey", lw=1, zorder=4) ratio.set_xlabel('{}'.format(var_name_safe), ha='right', x=1, size=13) #ratio.set_xlim(left=self.var_to_xrange[var][0], right=self.var_to_xrange[var][1]) ratio.set_ylabel('Data/MC', size=13) ratio.set_ylim(0, 2) ratio.grid(True, linestyle='dotted') else: axes.set_xlabel('{}'.format(var_name_safe), ha='right', x=1, size=13) Utils.check_dir('{}/plotting/plots/{}'.format(os.getcwd(), out_label)) fig.savefig('{0}/plotting/plots/{1}/{1}_{2}.pdf'.format(os.getcwd(), out_label, var)) plt.close()
EPISODES = 10000000 MEMORY_SIZE = 512 N_SAMPLES_PER_EPISODE = 128 #128 #128 BATCH_SIZE = 8 #8 #2 COPY_TARGET_WEIGHTS = 64 # SAMPLES TYPE_REWARD = "rouge-avg" # Dims # INPUT_DIMS = 300 #300 ACTION_DIMS = 2 LSTM_HIDDEN_DIMS = 512 #512 if __name__ == "__main__": agent = QAgent(INPUT_DIMS, ACTION_DIMS, MEMORY_SIZE, BATCH_SIZE, LSTM_HIDDEN_DIMS, MAX_LEN_DOC) utils = Utils() env = CNNDailyMailEnvironment(train_path, TYPE_REWARD) env_gen = env.get_environment_sample() best_episode_score = float("-inf") for e in range(EPISODES): spl_documents, spl_summaries = [], [] repr_documents = [] len_documents = [] for i in range(N_SAMPLES_PER_EPISODE): document, summary = next(env_gen) spl_document = utils.sentence_split(document, max_len=MAX_LEN_DOC) spl_summary = utils.sentence_split(summary, max_len=9999) repr_document = utils.sentence_embedding(spl_document)
def send(infos, sezione, antispam=True, to_id=None, special_name=None, special_group_name=None, special_user_name=None, no_log=False, special_token=None, special_bid=None, special_text=None, ignore_specials=False, recorsivity=None, add=None, parse="markdown"): text = "<vuoto>" try: quote = False inter_bot_id = None sezione_inter = None quitta = False no_prew = False if sezione: infos.trigger = sezione else: infos.trigger = "" if recorsivity: if recorsivity > 3: return else: recorsivity += 1 else: recorsivity = 1 if not to_id: to_id = infos.cid if special_group_name: infos.name = special_group_name if special_user_name: infos.user.name = special_user_name if special_token: infos.token = special_token if special_bid: infos.bid = special_bid if not special_text: text = Dialogs.get_text(infos, sezione) if add: try: text += add except Exception: pass if not text: return False if text.lower() == "skip" or text.lower() == "+skip+": return True if antispam: if Unreloaded.antispam(infos): return True else: text = special_text text = Dialogs.section_replacer(infos, text) if infos.api: return text if "[warn]" in text: return BotsFoos.warn(infos) if "[unwarn]" in text: return BotsFoos.unwarn(infos) if "+exe+" in text: infos.master_message("Master, +exe+ is deprecated:\n`" + text + "`\nIn `" + sezione + "`", parse_mode="markdown") Log.a("[%s] U: %s %s" % (infos.bot_name, infos.user.username, sezione)) return if not ignore_specials: text = Utils.replacer(infos, text) text = Actions.action(infos, text, sezione) if not text: return if type(text) is bool: return if "[noprew]" in text: text = text.replace("[noprew]", "") no_prew = True if "[quote]" in text: text = text.replace("[quote]", "") quote = infos.user.message.id if "[quote2]" in text: text = text.replace("[quote2]", "") if infos.to_user: quote = infos.to_user.message.id if "[quit]" in text: text = text.replace("[quit]", "") quitta = True match = re.search("\[(\d+)\]", text) if match: if int(match.group(1)) not in Manager.get_bots_id(): return HTTPLL.sendMessage( infos.token, Manager.get_prop_id(infos.token), "%s non è un ID valido." % match.group(1)) result = text.split("[" + match.group(1) + "]") trigs = json.loads( open("Files/bot_files/%s/%s" % (match.group(1), "triggers.json")).read()) if "autorizzati" not in trigs: HTTPLL.sendMessage( infos.token, infos.prop_id, "%s non ti ha autorizzato." % match.group(1)) elif infos.bid not in trigs["autorizzati"]: HTTPLL.sendMessage( infos.token, infos.prop_id, "%s non ti ha autorizzato." % match.group(1)) # infos.reply("Autorizzati: %s" % ) else: inter_bot_id = int(match.group(1)) sezione_inter = result[1] text = result[0] if special_name: text = text.replace("+newuser+", special_name) if not text: return text, kb = Utils.get_keyboard(text) if text == "": return try: caption = None if "+stk+" in text: stk = text.split("()")[1] HTTPLL.sendSticker(infos.token, chat_id=to_id, sticker=stk) return True if "+pht+" in text: elems = text.split("()") pht = elems[1] if len(elems) == 3: caption = elems[2] HTTPLL.sendChatAction(infos.token, to_id, 'upload_photo') time.sleep(0.3) HTTPLL.sendPhoto(infos.token, chat_id=to_id, photo=pht, caption=caption, reply_to_message_id=quote) return True if "+doc+" in text: elems = text.split("()") doc = elems[1] if len(elems) == 3: caption = elems[2] HTTPLL.sendDocument(infos.token, to_id, doc, caption=caption, reply_to_message_id=quote) return True if "+aud+" in text or "+voi+" in text: aud = text.split("()")[1] HTTPLL.sendVoice(infos.token, to_id, aud, reply_to_message_id=quote) return True if "+vid+" in text: elems = text.split("()") vid = elems[1] if len(elems) == 3: caption = elems[2] HTTPLL.sendVideo(infos.token, to_id, vid, caption=caption, reply_to_message_id=quote) return True except Exception as err: Log.w("Errore nell'invio del media: %s" % err) return False text = Utils.escape_markdown(text) text = text.replace("<b>", "*").replace("</b>", "*") text = text.replace("<c>", "`").replace("</c>", "`") text = text.replace("<i>", "_").replace("</i>", "_") text = Utils.link_elab(text, infos) text = re.sub("\/\w+\\_\w+", "$&", text).replace("\\\\_", "\\_") match = re.search("\B<q>.+</q>\B", text) if match: iquote = "[%s](tg://user?id=%s)" % (str(match.group(0)).replace( "<q>", "").replace("</q>", ""), infos.user.uid) text = re.sub("\B<q>.+</q>\B", iquote, text) result = re.finditer(re.compile(r"\*.+?\*"), text) if result: for res in result: text = text.replace(res.group(), res.group(0).replace("\_", "_")) HTTPLL.sendChatAction(infos.token, to_id, 'typing') HTTPLL.sendMessage(infos.token, chat_id=to_id, text=text, parse_mode=parse, disable_web_page_preview=no_prew, reply_to_message_id=quote, reply_markup=kb) if not no_log: Log.a("%s <- %s -> [%s]" % (infos.bid, infos.user.uid, sezione)) if infos.chat_private: return if quitta: HTTPLL.leaveChat(infos.token, infos.cid) if inter_bot_id and sezione_inter: try: send(infos, sezione_inter, special_token=Manager.get_token_from_bot_id(inter_bot_id), antispam=False, special_bid=inter_bot_id, recorsivity=recorsivity) except Exception: pass return True except Error.Unauthorized: if not to_id: Log.e("Qualcosa non va, l'ID era None...") return "ERR" DBs.remove_id(infos.entity, to_id) return "ERR" except Error.BadRequest as err: if "chat not found" in str(err): return if "group chat was migrated" in str(err): DBs.remove_id(infos.entity, to_id) return "ERR" Log.e("Bot %s -> BadRequest (%s)" % (infos.bot_name, err)) if infos.user.is_owner: infos.reply( "Master non sono riuscita ad inviare questo messaggio:\n" "`%s`\nSegnalalo a @Kaikyu o controlla la formattazione." % text, markdown=True) return "ERR" except Error.NotEnoughtRights: DBs.remove_id(infos.entity, to_id) return "ERR" except Exception as err: msg = "Ho trovato un errore: riga {} {} {}".format( sys.exc_info()[-1].tb_lineno, type(err).__name__, err) HTTPLL.sendMessage(infos.token, infos.prop_id, msg) Log.e(msg) if "can't parse" in str(err).lower(): # noinspection PyTypeChecker send(infos, "", to_id=Manager.get_prop_id(infos.token), special_text= "C'è un problema con la formattazione del messaggio:\n\n%s" % text, parse=None, antispam=False) return "ERR"
# Parsing arguments parser = argparse.ArgumentParser( prog='bblr-hopfield-boltzmann results to LaTeX script', description= 'Automatic script to convert the results of the project bblr-hopfield-boltzmann into LaTeX.' ) parser.add_argument('result_files', nargs='+', help='List of result JSON files.') arguments = parser.parse_args() # Loading results. results = [] for resultFile in arguments.result_files: results += Utils.loadJsonFile(resultFile) # Organizing results. patternDataSetResultDictionary = {} modelResultDictionary = {} inputDataSetResultDictionary = {} trainingAndValidationResultDictionary = {} testingResultDictionary = {} for result in results: # Managing the black list. result['patternDataSetId'] = getIdAfterBlacklist( result['patternDataSetId'], BLACKLIST_PATTERNS) result['modelId'] = getIdAfterBlacklist(result['modelId'], BLACKLIST_MODELS) result['inputDataSetId'] = getIdAfterBlacklist(
def run_all_experiments(self, iterations, running_mode): csv_path = "Dataset/ihdp_sample.csv" split_size = 0.8 device = Utils.get_device() print(device) results_list = [] train_parameters_SAE = { "epochs": 400, "lr": 0.001, "batch_size": 32, "shuffle": True, "sparsity_probability": 0.8, "weight_decay": 0.0003, "BETA": 0.1, } run_parameters = self.__get_run_parameters(running_mode) print(str(train_parameters_SAE)) file1 = open(run_parameters["summary_file_name"], "a") file1.write(str(train_parameters_SAE)) file1.write("\n") file1.write("\n") for iter_id in range(iterations): print("########### 400 epochs ###########") iter_id += 1 print("--" * 20) print("iter_id: {0}".format(iter_id)) print("--" * 20) # load data for propensity network dL = DataLoader() np_covariates_X_train, np_covariates_X_test, np_covariates_Y_train, np_covariates_Y_test \ = self.load_data(running_mode, dL, csv_path, split_size) dp_sa = DPN_SA_Deep() trained_models = dp_sa.train_eval_DCN( iter_id, np_covariates_X_train, np_covariates_Y_train, dL, device, run_parameters, is_synthetic=run_parameters["is_synthetic"]) sparse_classifier = trained_models["sparse_classifier"] LR_model = trained_models["LR_model"] LR_model_lasso = trained_models["LR_model_lasso"] sae_classifier_stacked_all_layer_active = trained_models[ "sae_classifier_stacked_all_layer_active"] sae_classifier_stacked_cur_layer_active = trained_models[ "sae_classifier_stacked_cur_layer_active"] # test DCN network reply = dp_sa.test_DCN(iter_id, np_covariates_X_test, np_covariates_Y_test, dL, sparse_classifier, sae_classifier_stacked_all_layer_active, sae_classifier_stacked_cur_layer_active, LR_model, LR_model_lasso, device, run_parameters) MSE_SAE_e2e = reply["MSE_SAE_e2e"] MSE_SAE_stacked_all_layer_active = reply[ "MSE_SAE_stacked_all_layer_active"] MSE_SAE_stacked_cur_layer_active = reply[ "MSE_SAE_stacked_cur_layer_active"] MSE_NN = reply["MSE_NN"] MSE_LR = reply["MSE_LR"] MSE_LR_lasso = reply["MSE_LR_Lasso"] true_ATE_NN = reply["true_ATE_NN"] true_ATE_SAE_e2e = reply["true_ATE_SAE_e2e"] true_ATE_SAE_stacked_all_layer_active = reply[ "true_ATE_SAE_stacked_all_layer_active"] true_ATE_SAE_stacked_cur_layer_active = reply[ "true_ATE_SAE_stacked_cur_layer_active"] true_ATE_LR = reply["true_ATE_LR"] true_ATE_LR_Lasso = reply["true_ATE_LR_Lasso"] predicted_ATE_NN = reply["predicted_ATE_NN"] predicted_ATE_SAE_e2e = reply["predicted_ATE_SAE_e2e"] predicted_ATE_SAE_stacked_all_layer_active = reply[ "predicted_ATE_SAE_stacked_all_layer_active"] predicted_ATE_SAE_stacked_cur_layer_active = reply[ "predicted_ATE_SAE_stacked_cur_layer_active"] predicted_ATE_LR = reply["predicted_ATE_LR"] predicted_ATE_LR_Lasso = reply["predicted_ATE_LR_Lasso"] file1.write( "Iter: {0}, MSE_Sparse_e2e: {1}, MSE_Sparse_stacked_all_layer_active: {2}, " "MSE_Sparse_stacked_cur_layer_active: {3}," " MSE_NN: {4}, MSE_LR: {5}, MSE_LR_Lasso: {6}\n".format( iter_id, MSE_SAE_e2e, MSE_SAE_stacked_all_layer_active, MSE_SAE_stacked_cur_layer_active, MSE_NN, MSE_LR, MSE_LR_lasso)) result_dict = OrderedDict() result_dict["iter_id"] = iter_id result_dict["MSE_NN"] = MSE_NN result_dict["MSE_SAE_e2e"] = MSE_SAE_e2e result_dict[ "MSE_SAE_stacked_all_layer_active"] = MSE_SAE_stacked_all_layer_active result_dict[ "MSE_SAE_stacked_cur_layer_active"] = MSE_SAE_stacked_cur_layer_active result_dict["MSE_LR"] = MSE_LR result_dict["MSE_LR_lasso"] = MSE_LR_lasso result_dict["true_ATE_NN"] = true_ATE_NN result_dict["true_ATE_SAE_e2e"] = true_ATE_SAE_e2e result_dict[ "true_ATE_SAE_stacked_all_layer_active"] = true_ATE_SAE_stacked_all_layer_active result_dict[ "true_ATE_SAE_stacked_cur_layer_active"] = true_ATE_SAE_stacked_cur_layer_active result_dict["true_ATE_LR"] = true_ATE_LR result_dict["true_ATE_LR_Lasso"] = true_ATE_LR_Lasso result_dict["predicted_ATE_NN"] = predicted_ATE_NN result_dict["predicted_ATE_SAE_e2e"] = predicted_ATE_SAE_e2e result_dict[ "predicted_ATE_SAE_stacked_all_layer_active"] = predicted_ATE_SAE_stacked_all_layer_active result_dict[ "predicted_ATE_SAE_stacked_cur_layer_active"] = predicted_ATE_SAE_stacked_cur_layer_active result_dict["predicted_ATE_LR"] = predicted_ATE_LR result_dict["predicted_ATE_LR_Lasso"] = predicted_ATE_LR_Lasso results_list.append(result_dict) MSE_set_NN = [] MSE_set_SAE_e2e = [] MSE_set_SAE_stacked_all_layer_active = [] MSE_set_SAE_stacked_cur_layer_active = [] MSE_set_LR = [] MSE_set_LR_Lasso = [] true_ATE_NN_set = [] true_ATE_SAE_set_e2e = [] true_ATE_SAE_set_stacked_all_layer_active = [] true_ATE_SAE_set_stacked_cur_layer_active = [] true_ATE_LR_set = [] true_ATE_LR_Lasso_set = [] predicted_ATE_NN_set = [] predicted_ATE_SAE_set_e2e = [] predicted_ATE_SAE_set_all_layer_active = [] predicted_ATE_SAE_set_cur_layer_active = [] predicted_ATE_LR_set = [] predicted_ATE_LR_Lasso_set = [] for result in results_list: MSE_set_NN.append(result["MSE_NN"]) MSE_set_SAE_e2e.append(result["MSE_SAE_e2e"]) MSE_set_SAE_stacked_all_layer_active.append( result["MSE_SAE_stacked_all_layer_active"]) MSE_set_SAE_stacked_cur_layer_active.append( result["MSE_SAE_stacked_cur_layer_active"]) MSE_set_LR.append(result["MSE_LR"]) MSE_set_LR_Lasso.append(result["MSE_LR_lasso"]) true_ATE_NN_set.append(result["true_ATE_NN"]) true_ATE_SAE_set_e2e.append(result["true_ATE_SAE_e2e"]) true_ATE_SAE_set_stacked_all_layer_active.append( result["true_ATE_SAE_stacked_all_layer_active"]) true_ATE_SAE_set_stacked_cur_layer_active.append( result["true_ATE_SAE_stacked_all_layer_active"]) true_ATE_LR_set.append(result["true_ATE_LR"]) true_ATE_LR_Lasso_set.append(result["true_ATE_LR_Lasso"]) predicted_ATE_NN_set.append(result["predicted_ATE_NN"]) predicted_ATE_SAE_set_e2e.append(result["predicted_ATE_SAE_e2e"]) predicted_ATE_SAE_set_all_layer_active.append( result["predicted_ATE_SAE_stacked_all_layer_active"]) predicted_ATE_SAE_set_cur_layer_active.append( result["predicted_ATE_SAE_stacked_cur_layer_active"]) predicted_ATE_LR_set.append(result["predicted_ATE_LR"]) predicted_ATE_LR_Lasso_set.append(result["predicted_ATE_LR_Lasso"]) MSE_total_NN = np.mean(np.array(MSE_set_NN)) std_MSE_NN = np.std(MSE_set_NN) Mean_ATE_NN_true = np.mean(np.array(true_ATE_NN_set)) std_ATE_NN_true = np.std(true_ATE_NN_set) Mean_ATE_NN_predicted = np.mean(np.array(predicted_ATE_NN_set)) std_ATE_NN_predicted = np.std(predicted_ATE_NN_set) print("\n-------------------------------------------------\n") print("Using NN, MSE: {0}, SD: {1}".format(MSE_total_NN, std_MSE_NN)) print("Using NN, true ATE: {0}, SD: {1}".format( Mean_ATE_NN_true, std_ATE_NN_true)) print("Using NN, predicted ATE: {0}, SD: {1}".format( Mean_ATE_NN_predicted, std_ATE_NN_predicted)) print("\n-------------------------------------------------\n") MSE_total_SAE_e2e = np.mean(np.array(MSE_set_SAE_e2e)) std_MSE_SAE_e2e = np.std(MSE_set_SAE_e2e) Mean_ATE_SAE_true_e2e = np.mean(np.array(true_ATE_SAE_set_e2e)) std_ATE_SAE_true_e2e = np.std(true_ATE_SAE_set_e2e) Mean_ATE_SAE_predicted_e2e = np.mean( np.array(predicted_ATE_SAE_set_e2e)) std_ATE_SAE_predicted_e2e = np.std(predicted_ATE_SAE_set_e2e) print("Using SAE E2E, MSE: {0}, SD: {1}".format( MSE_total_SAE_e2e, std_MSE_SAE_e2e)) print("Using SAE E2E, true ATE: {0}, SD: {1}".format( Mean_ATE_SAE_true_e2e, std_ATE_SAE_true_e2e)) print("Using SAE E2E, predicted ATE: {0}, SD: {1}".format( Mean_ATE_SAE_predicted_e2e, std_ATE_SAE_predicted_e2e)) print("\n-------------------------------------------------\n") MSE_total_SAE_stacked_all_layer_active = np.mean( np.array(MSE_set_SAE_stacked_all_layer_active)) std_MSE_SAE_stacked_all_layer_active = np.std( MSE_set_SAE_stacked_all_layer_active) Mean_ATE_SAE_true_stacked_all_layer_active = np.mean( np.array(true_ATE_SAE_set_stacked_all_layer_active)) std_ATE_SAE_true_stacked_all_layer_active = np.std( true_ATE_SAE_set_stacked_all_layer_active) Mean_ATE_SAE_predicted_all_layer_active = np.mean( np.array(predicted_ATE_SAE_set_all_layer_active)) std_ATE_SAE_predicted_all_layer_active = np.std( predicted_ATE_SAE_set_all_layer_active) print("Using SAE stacked all layer active, MSE: {0}, SD: {1}".format( MSE_total_SAE_stacked_all_layer_active, std_MSE_SAE_stacked_all_layer_active)) print("Using SAE stacked all layer active, true ATE: {0}, SD: {1}". format(Mean_ATE_SAE_true_stacked_all_layer_active, std_ATE_SAE_true_stacked_all_layer_active)) print( "Using SAE stacked all layer active, predicted ATE: {0}, SD: {1}". format(Mean_ATE_SAE_predicted_all_layer_active, std_ATE_SAE_predicted_all_layer_active)) print("\n-------------------------------------------------\n") MSE_total_SAE_stacked_cur_layer_active = np.mean( np.array(MSE_set_SAE_stacked_cur_layer_active)) std_MSE_SAE_stacked_cur_layer_active = np.std( MSE_set_SAE_stacked_cur_layer_active) Mean_ATE_SAE_true_stacked_cur_layer_active = np.mean( np.array(true_ATE_SAE_set_stacked_cur_layer_active)) std_ATE_SAE_true_stacked_cur_layer_active = np.std( true_ATE_SAE_set_stacked_cur_layer_active) Mean_ATE_SAE_predicted_cur_layer_active = np.mean( np.array(predicted_ATE_SAE_set_cur_layer_active)) std_ATE_SAE_predicted_cur_layer_active = np.std( predicted_ATE_SAE_set_cur_layer_active) print("Using SAE stacked cur layer active, MSE: {0}, SD: {1}".format( MSE_total_SAE_stacked_cur_layer_active, std_MSE_SAE_stacked_cur_layer_active)) print("Using SAE stacked cur layer active, true ATE: {0}, SD: {1}". format(Mean_ATE_SAE_true_stacked_cur_layer_active, std_ATE_SAE_true_stacked_cur_layer_active)) print( "Using SAE stacked cur layer active, predicted ATE: {0}, SD: {1}". format(Mean_ATE_SAE_predicted_cur_layer_active, std_ATE_SAE_predicted_cur_layer_active)) print("\n-------------------------------------------------\n") MSE_total_LR = np.mean(np.array(MSE_set_LR)) std_MSE_LR = np.std(MSE_set_LR) Mean_ATE_LR_true = np.mean(np.array(true_ATE_LR_set)) std_ATE_LR_true = np.std(true_ATE_LR_set) Mean_ATE_LR_predicted = np.mean(np.array(predicted_ATE_LR_set)) std_ATE_LR_predicted = np.std(predicted_ATE_LR_set) print("Using Logistic Regression, MSE: {0}, SD: {1}".format( MSE_total_LR, std_MSE_LR)) print("Using Logistic Regression, true ATE: {0}, SD: {1}".format( Mean_ATE_LR_true, std_ATE_LR_true)) print("Using Logistic Regression, predicted ATE: {0}, SD: {1}".format( Mean_ATE_LR_predicted, std_ATE_LR_predicted)) print("\n-------------------------------------------------\n") MSE_total_LR_lasso = np.mean(np.array(MSE_set_LR_Lasso)) std_MSE_LR_lasso = np.std(MSE_set_LR_Lasso) Mean_ATE_LR_lasso_true = np.mean(np.array(true_ATE_LR_Lasso_set)) std_ATE_LR_lasso_true = np.std(true_ATE_LR_Lasso_set) Mean_ATE_LR_lasso_predicted = np.mean( np.array(predicted_ATE_LR_Lasso_set)) std_ATE_LR_lasso_predicted = np.std(predicted_ATE_LR_Lasso_set) print("Using Lasso Logistic Regression, MSE: {0}, SD: {1}".format( MSE_total_LR_lasso, std_MSE_LR_lasso)) print("Using Lasso Logistic Regression, true ATE: {0}, SD: {1}".format( Mean_ATE_LR_lasso_true, std_ATE_LR_lasso_true)) print("Using Lasso Logistic Regression, predicted ATE: {0}, SD: {1}". format(Mean_ATE_LR_lasso_predicted, std_ATE_LR_lasso_predicted)) print("--" * 20) file1.write("\n##################################################") file1.write("\n") file1.write("\nUsing NN, MSE: {0}, SD: {1}".format( MSE_total_NN, std_MSE_NN)) file1.write("\nUsing NN, true ATE: {0}, SD: {1}".format( Mean_ATE_NN_true, std_ATE_NN_true)) file1.write("\nUsing NN, predicted ATE: {0}, SD: {1}".format( Mean_ATE_NN_predicted, std_ATE_NN_predicted)) file1.write("\n-------------------------------------------------\n") file1.write("Using SAE E2E, MSE: {0}, SD: {1}".format( MSE_total_SAE_e2e, std_MSE_SAE_e2e)) file1.write("\nUsing SAE E2E, true ATE: {0}, SD: {1}".format( Mean_ATE_SAE_true_e2e, std_ATE_SAE_true_e2e)) file1.write("\nUsing SAE E2E, predicted ATE: {0}, SD: {1}".format( Mean_ATE_SAE_predicted_e2e, std_ATE_SAE_predicted_e2e)) file1.write("\n-------------------------------------------------\n") file1.write("\n-------------------------------------------------\n") file1.write( "Using SAE stacked all layer active, MSE: {0}, SD: {1}".format( MSE_total_SAE_stacked_all_layer_active, std_MSE_SAE_stacked_all_layer_active)) file1.write( "\nUsing SAE stacked all layer active, true ATE: {0}, SD: {1}". format(Mean_ATE_SAE_true_stacked_all_layer_active, std_ATE_SAE_true_stacked_all_layer_active)) file1.write( "\nUsing SAE, stacked all layer active predicted ATE: {0}, SD: {1}" .format(Mean_ATE_SAE_predicted_all_layer_active, std_ATE_SAE_predicted_all_layer_active)) file1.write("\n-------------------------------------------------\n") file1.write("\n-------------------------------------------------\n") file1.write( "Using SAE stacked cur layer active, MSE: {0}, SD: {1}".format( MSE_total_SAE_stacked_cur_layer_active, std_MSE_SAE_stacked_cur_layer_active)) file1.write( "\nUsing SAE stacked cur layer active, true ATE: {0}, SD: {1}". format(Mean_ATE_SAE_true_stacked_cur_layer_active, std_ATE_SAE_true_stacked_cur_layer_active)) file1.write( "\nUsing SAE stacked cur layer active, predicted ATE: {0}, SD: {1}" .format(Mean_ATE_SAE_predicted_cur_layer_active, std_ATE_SAE_predicted_cur_layer_active)) file1.write("\n-------------------------------------------------\n") file1.write("Using Logistic Regression, MSE: {0}, SD: {1}".format( MSE_total_LR, std_MSE_LR)) file1.write( "\nUsing Logistic Regression, true ATE: {0}, SD: {1}".format( Mean_ATE_LR_true, std_ATE_LR_true)) file1.write( "\nUsing Logistic Regression, predicted ATE: {0}, SD: {1}".format( Mean_ATE_LR_predicted, std_ATE_LR_predicted)) file1.write("\n-------------------------------------------------\n") file1.write( "Using Lasso Logistic Regression, MSE: {0}, SD: {1}".format( MSE_total_LR_lasso, std_MSE_LR_lasso)) file1.write( "\nUsing Lasso Logistic Regression, true ATE: {0}, SD: {1}".format( Mean_ATE_LR_lasso_true, std_ATE_LR_lasso_true)) file1.write( "\nUsing Lasso Logistic Regression, predicted ATE: {0}, SD: {1}". format(Mean_ATE_LR_lasso_predicted, std_ATE_LR_lasso_predicted)) file1.write("\n##################################################") Utils.write_to_csv(run_parameters["consolidated_file_path"], results_list)
def trans(cls, bot, update): Utils.log_update(update) html = cls.get_list(Type.TRANSACTION) Utils.send(bot, update.message.chat_id, html)
def __init__(self, filename): self.filename = filename self.handle = open(self.filename, "rb") self.total_filesize = Utils.get_file_size(self.handle) self.finished = False
class Eagl777: def __init__(self, driver): self.driver = driver utils = Utils() def get_message(self, chName): print('getting signal from ' + chName + ' started') try: result = self.driver.find_elements_by_xpath( "//div[@class='im_history_col']//div[@class='im_history_messages_peer' and not(@style='display: none;')]//div[contains(@class,'im_history_message_wrap')]//div[@class='im_message_text' and not(@style='display: none;')]" )[-1] sleep(2) checkText1 = "sl" checkText2 = "tp" myText = "" if ((result.text != '')): if ((str.find(result.text.lower(), checkText1) != -1)): if (str.find(result.text.lower(), checkText2) != -1): print('getting signal from ' + chName + ' finished succesfully') return result.text print('getting signal from ' + chName + ' finished : no signal message!') return None except: print('getting signal from ' + chName + ' finished failed') return 'failed' # if(str.find(results[-1].text,checkText) != -1): # myText= results[-2].text # else : # myText= results[-1].text # if(str.find(myText,"TAKE PROFIT") != -1): # return myText # else: # return None # except: # return None def createSignalDto(self, msg, chName): print('creating signalDto for ' + chName + ' started') lines = str.splitlines(msg) signals = {} counter = -1 for line in lines: if line.lower().find('buy') != -1 or line.lower().find( 'sell') != -1: counter += 1 signals[counter] = SignalDto() signals[counter].provider = chName enter = line.split(" ") # first line is Euraud Buy at 1.62000 signals[counter].symbol = str.upper(enter[0]) signals[counter].enter_type = 1 if str.upper( enter[1]) == "BUY" else 2 try: signals[counter].enterPrice = float(enter[4]) except: signals[counter].enterPrice = float(enter[3]) elif line.lower().find('sl') != -1: signals[counter].sl = float(line.lower().replace('sl', '').replace( ' ', '')) elif line.lower().find('tp') != -1: signals[counter].tp = float(line.lower().replace('tp', '').replace( ' ', '')) print('creating signalDto for ' + chName + ' finished') return signals
def __init__(self): self.bots = Bots() self.speech = Speech_Handlers() self.utils = Utils()
def on_mousebuttondown(self, event): if event.button == 1: if Utils.inRect(self.get_dragandrop_rect(), *event.pos): self.draganddrop = True
M = mat[0] B = mat[1] #gera eixo-X do grafico arrEixoX = [] for i in range(numero_de_elementos): arrEixoX.append(i) #no mac executa aproximadamente 3837155 operacoes por segundo #formula para o tempo previsto no mac -> ((numero_de_elementos^3)*1/3) / 3837155 = segundos_rodando #Utils().imprimeMatriz(M, B) #Utils().obtemInfoMatriz(M) print("Metodo de Gauss (sem pivoteamento)") inicio = Utils().getTime() resGauss = Gauss().executar(M, B) fim = Utils().getTime() print("Tamanho da matriz: " + repr(numero_de_elementos) + "x" + repr(numero_de_elementos)) print("Passos ate a resolucao: " + repr(resGauss[1])) Utils().imprimeDiferencaTempo(inicio, fim) #print("Resultado do sistema por Gauss: ", resGauss[0]); #gerarGrafico(arrEixoX, resGauss[0], "Metodo de Gauss", "Gauss") erro = Utils().erroResidual(M, resGauss[0], B) print("Erro maximo encontrado: " + repr(erro[1])) gerarGrafico(arrEixoX, erro[0], "Erro no Metodo de Gauss", "Gauss") ''' print("") print("------") print("")