tied_weights=False) train_2 = Train( dA_1_out, dA_2, algorithm=sgd.SGD(learning_rate=.05, batch_size=10, termination_criterion=EpochCounter(30), cost=cost_ae.MeanSquaredReconstructionError(), monitoring_batches=5, monitoring_dataset=dA_1_out) ) train_2.main_loop() ####################### #### Fine tuning #### ####################### ### defining each layers ### layer_1 = mlp.PretrainedLayer('layer_1', dA_1) layer_2 = mlp.PretrainedLayer('layer_2', dA_2) output_layer = mlp.Softmax(2, 'output', irange=.1) ### run fine tuning ### layers = [layer_1, layer_2, output_layer] main_mlp = mlp.MLP(layers, nvis=2) train = Train( dataset, main_mlp, algorithm=sgd.SGD(learning_rate=.05, batch_size=10, termination_criterion=EpochCounter(400), monitoring_batches=5, monitoring_dataset=dataset) ) train.main_loop() ################### #### Testing #### ################### dataset.test(main_mlp)
from XOR import XOR ############################### #### Setting for dataset #### ############################### dataset = XOR() ########################## #### Setting for NN #### ########################## # create layers hidden_layer = mlp.Sigmoid(layer_name='hidden', dim=3, irange=.1, init_bias=1.) output_layer = mlp.Softmax(2, 'output', irange=.1) layers = [hidden_layer, output_layer] model = mlp.MLP(layers, nvis=2) #################### #### Training #### #################### train = Train( dataset, model, algorithm=sgd.SGD(learning_rate=.05, batch_size=10, termination_criterion=EpochCounter(400)) ) train.main_loop() ################# ### Testing ### ################# dataset.test(model)