Пример #1
0
def unit_variance_mlpg_matrix(windows, T):
    """Compute MLPG matrix assuming input is normalized to have unit-variances.

    Let :math:`\mu` is the input mean sequence (``num_windows*T x static_dim``),
    :math:`W` is a window matrix ``(T x num_windows*T)``, assuming input is
    normalized to have unit-variances, MLPG can be written as follows:

    .. math::

        y = R \mu

    where

    .. math::

        R = (W^{T} W)^{-1} W^{T}

    Here we call :math:`R` as the MLPG matrix.

    Args:
        windows: (list): List of windows.
        T (int): Number of frames.

    Returns:
        numpy.ndarray: MLPG matrix (``T x nun_windows*T``).

    See also:
        :func:`nnmnkwii.autograd.UnitVarianceMLPG`,
        :func:`nnmnkwii.paramgen.mlpg`.

    Examples:
        >>> from nnmnkwii import paramgen as G
        >>> import numpy as np
        >>> windows = [
        ...         (0, 0, np.array([1.0])),
        ...         (1, 1, np.array([-0.5, 0.0, 0.5])),
        ...         (1, 1, np.array([1.0, -2.0, 1.0])),
        ...     ]
        >>> G.unit_variance_mlpg_matrix(windows, 3)
        array([[  2.73835927e-01,   1.95121944e-01,   9.20177400e-02,
                  9.75609720e-02,  -9.09090936e-02,  -9.75609720e-02,
                 -3.52549881e-01,  -2.43902430e-02,   1.10864742e-02],
               [  1.95121944e-01,   3.41463417e-01,   1.95121944e-01,
                  1.70731708e-01,  -5.55111512e-17,  -1.70731708e-01,
                 -4.87804860e-02,  -2.92682916e-01,  -4.87804860e-02],
               [  9.20177400e-02,   1.95121944e-01,   2.73835927e-01,
                  9.75609720e-02,   9.09090936e-02,  -9.75609720e-02,
                  1.10864742e-02,  -2.43902430e-02,  -3.52549881e-01]], dtype=float32)
    """
    win_mats = build_win_mats(windows, T)
    sdw = np.max([win_mat.l + win_mat.u for win_mat in win_mats])

    P = bm.zeros(sdw, sdw, T)
    for win_index, win_mat in enumerate(win_mats):
        bm.dot_mm_plus_equals(win_mat.T, win_mat, target_bm=P)
    chol_bm = bla.cholesky(P, lower=True)
    Pinv = cholesky_inv_banded(chol_bm.full(), width=chol_bm.l + chol_bm.u + 1)

    cocatenated_window = full_window_mat(win_mats, T)
    return Pinv.dot(cocatenated_window.T).astype(np.float32)
Пример #2
0
def gen_chol_factor_BandMat(size, depth=None, contrib_rank=2, transposed=None):
    """Generates a random Cholesky factor BandMat.

    This works by generating a random positive definite matrix and then
    computing its Cholesky factor, since using a random matrix as a Cholesky
    factor seems to often lead to ill-conditioned matrices.
    """
    if transposed is None:
        transposed = rand_bool()
    mat_bm = gen_pos_def_BandMat(size, depth=depth, contrib_rank=contrib_rank)
    chol_bm = bla.cholesky(mat_bm, lower=rand_bool())
    if transposed:
        chol_bm = chol_bm.T
    assert chol_bm.l == 0 or chol_bm.u == 0
    assert chol_bm.l + chol_bm.u == mat_bm.l
    randomize_extra_entries_bm(chol_bm)
    return chol_bm
Пример #3
0
def gen_chol_factor_BandMat(size, depth=None, contrib_rank=2, transposed=None):
    """Generates a random Cholesky factor BandMat.

    This works by generating a random positive definite matrix and then
    computing its Cholesky factor, since using a random matrix as a Cholesky
    factor seems to often lead to ill-conditioned matrices.
    """
    if transposed is None:
        transposed = rand_bool()
    mat_bm = gen_pos_def_BandMat(size, depth=depth, contrib_rank=contrib_rank)
    chol_bm = bla.cholesky(mat_bm, lower=rand_bool())
    if transposed:
        chol_bm = chol_bm.T
    assert chol_bm.l == 0 or chol_bm.u == 0
    assert chol_bm.l + chol_bm.u == mat_bm.l
    randomize_extra_entries_bm(chol_bm)
    return chol_bm
Пример #4
0
    def test_cholesky(self, its=50):
        for it in range(its):
            size = random.choice([0, 1, randint(0, 10), randint(0, 100)])
            mat_bm = gen_pos_def_BandMat(size)
            depth = mat_bm.l
            lower = rand_bool()
            alternative = rand_bool()

            chol_bm = bla.cholesky(mat_bm, lower=lower,
                                   alternative=alternative)
            assert chol_bm.l == (depth if lower else 0)
            assert chol_bm.u == (0 if lower else depth)
            assert not np.may_share_memory(chol_bm.data, mat_bm.data)

            if lower != alternative:
                mat_bm_again = bm.dot_mm(chol_bm, chol_bm.T)
            else:
                mat_bm_again = bm.dot_mm(chol_bm.T, chol_bm)
            assert_allclose(mat_bm_again.full(), mat_bm.full())
Пример #5
0
    def test_cholesky(self, its=50):
        for it in range(its):
            size = random.choice([0, 1, randint(0, 10), randint(0, 100)])
            mat_bm = gen_pos_def_BandMat(size)
            depth = mat_bm.l
            lower = rand_bool()
            alternative = rand_bool()

            chol_bm = bla.cholesky(mat_bm, lower=lower,
                                   alternative=alternative)
            assert chol_bm.l == (depth if lower else 0)
            assert chol_bm.u == (0 if lower else depth)
            assert not np.may_share_memory(chol_bm.data, mat_bm.data)

            if lower != alternative:
                mat_bm_again = bm.dot_mm(chol_bm, chol_bm.T)
            else:
                mat_bm_again = bm.dot_mm(chol_bm.T, chol_bm)
            assert_allclose(mat_bm_again.full(), mat_bm.full())