Пример #1
0
def macs_bedfiles(ex, chrmeta, tests, controls, names, macs_args, via,
                  logfile):
    missing_beds = [k for k, t in enumerate(tests) if not t[0]]
    if not missing_beds: return tests
    genome_size = sum([x['length'] for x in chrmeta.values()])
    logfile.write("Running MACS.\n")
    logfile.flush()
    _tts = [tests[k][1] for k in missing_beds]
    _nms = {
        'tests': [names['tests'][k] for k in missing_beds],
        'controls': names['controls']
    }
    macsout = add_macs_results(ex,
                               0,
                               genome_size,
                               _tts,
                               ctrlbam=controls,
                               name=_nms,
                               poisson_threshold={},
                               macs_args=macs_args,
                               via=via)
    logfile.write("Done MACS.\n")
    logfile.flush()
    for nbam, bed_bam in enumerate(tests):
        name = names['tests'][nbam]
        if not bed_bam[0]:
            if len(names['controls']) < 2:
                bed_bam = (macsout[(name, names['controls'][0])] +
                           "_summits.bed", bed_bam[1], _macs_flank)
            else:
                _beds = [
                    macsout[(name, x)] + "_summits.bed"
                    for x in names['controls']
                ]
                bed_bam = (intersect_many_bed(ex, _beds, via=via), bed_bam[1],
                           _macs_flank)
        tests[nbam] = bed_bam
    return tests
Пример #2
0
def macs_bedfiles( ex, chrmeta, tests, controls, names, macs_args, via, logfile ):
    missing_beds = [k for k,t in enumerate(tests) if not t[0]]
    if not missing_beds: return tests
    genome_size = sum([x['length'] for x in chrmeta.values()])
    logfile.write("Running MACS.\n");logfile.flush()
    _tts = [tests[k][1] for k in missing_beds]
    _nms = {'tests': [names['tests'][k] for k in missing_beds],
            'controls': names['controls']}
    macsout = add_macs_results( ex, 0, genome_size, _tts, 
                                ctrlbam=controls, name=_nms,
                                poisson_threshold={},
                                macs_args=macs_args, via=via )
    logfile.write("Done MACS.\n");logfile.flush()
    for nbam,bed_bam in enumerate(tests):
        name = names['tests'][nbam]
        if not bed_bam[0]:
            if len(names['controls']) < 2:
                bed_bam = (macsout[(name,names['controls'][0])]+"_summits.bed", bed_bam[1],_macs_flank)
            else:
                _beds = [macsout[(name,x)]+"_summits.bed" for x in names['controls']]
                bed_bam = (intersect_many_bed( ex, _beds, via=via ), bed_bam[1],_macs_flank)
        tests[nbam] = bed_bam
    return tests
Пример #3
0
def chipseq_workflow( ex, job_or_dict, assembly, script_path='', logfile=sys.stdout, via='lsf' ):
    """Runs a chipseq workflow over bam files obtained by mapseq. Will optionally run ``macs`` and 'run_deconv'.

    :param ex: a 'bein' execution environment to run jobs in,

    :param job_or_dict: a 'Frontend' 'job' object, or a dictionary with key 'groups', 'files' and 'options' if applicable,

    :param assembly: a genrep.Assembly object,

    :param script_path: only needed if 'run_deconv' is in the job options, must point to the location of the R scripts.

    Defaults ``macs`` parameters (overriden by ``job_or_dict['options']['macs_args']``) are set as follows:

    * ``'-bw'``: 200 ('bandwith')

    * ``'-m'``: 10,100 ('minimum and maximum enrichments relative to background or control')

    The enrichment bounds will be computed from a Poisson threshold *T*, if available, as *(min(30,5*(T+1)),50*(T+1))*.

    Returns a tuple of a dictionary with keys *group_id* from the job groups, *macs* and *deconv* if applicable and values file description dictionaries and a dictionary of *group_ids* to *names* used in file descriptions.
"""
    options = {}
    if logfile is None: logfile = sys.stdout
    if isinstance(job_or_dict,frontend.Job):
        options = job_or_dict.options
        groups = job_or_dict.groups
        mapseq_files = job_or_dict.files
    elif isinstance(job_or_dict,dict) and 'groups' in job_or_dict:
        if 'options' in job_or_dict:
            options = job_or_dict['options']
        groups = job_or_dict['groups']
        for gid in groups.keys():
            if not('name' in groups[gid]):
                groups[gid]['name'] = gid
        mapseq_files = job_or_dict.get('files',{})
    else:
        raise TypeError("job_or_dict must be a frontend. Job object or a dictionary with key 'groups'.")
    merge_strands = int(options.get('merge_strands',-1))
    suffixes = ["fwd","rev"]
    peak_deconvolution = options.get('peak_deconvolution',False)
    if isinstance(peak_deconvolution,basestring):
        peak_deconvolution = peak_deconvolution.lower() in ['1','true','t']
    run_meme = options.get('run_meme',False)
    if isinstance(run_meme,basestring):
        run_meme = run_meme.lower() in ['1','true','t']
    macs_args = options.get('macs_args',["--bw","200"])
    b2w_args = options.get('b2w_args',[])
    if not(isinstance(mapseq_files,dict)):
        raise TypeError("Mapseq_files must be a dictionary.")
    tests = []
    controls = []
    names = {'tests': [], 'controls': []}
    read_length = []
    p_thresh = {}
    for gid,mapped in mapseq_files.iteritems():
        group_name = groups[gid]['name']
        if not(isinstance(mapped,dict)):
            raise TypeError("Mapseq_files values must be dictionaries with keys *run_ids* or 'bam'.")
        if 'bam' in mapped:
            mapped = {'_': mapped}
        futures = {}
        ptruns = []
        for k in mapped.keys():
            if not 'libname' in mapped[k]:
                mapped[k]['libname'] = group_name+"_"+str(k)
            if not 'stats' in mapped[k]:
                futures[k] = mapseq.bamstats.nonblocking( ex, mapped[k]["bam"], via=via )
            if mapped[k].get('poisson_threshold',-1)>0:
                ptruns.append(mapped[k]['poisson_threshold'])
        if len(ptruns)>0:
            p_thresh['group_name'] = sum(ptruns)/len(ptruns)
        for k in futures.keys():
            mapped[k]['stats'] = f.wait()
        if len(mapped)>1:
            bamfile = mapseq.merge_bam(ex, [m['bam'] for m in mapped.values()])
        else:
            bamfile = mapped.values()[0]['bam']
        if groups[gid]['control']:
            controls.append(bamfile)
            names['controls'].append((gid,group_name))
        else:
            tests.append(bamfile)
            names['tests'].append((gid,group_name))
            read_length.append(mapped.values()[0]['stats']['read_length'])
    genome_size = mapped.values()[0]['stats']['genome_size']
    if len(controls)<1:
        controls = [None]
        names['controls'] = [(0,None)]
    logfile.write("Starting MACS.\n");logfile.flush()
    processed = {'macs': add_macs_results( ex, read_length, genome_size,
                                           tests, ctrlbam=controls, name=names,
                                           poisson_threshold=p_thresh,
                                           macs_args=macs_args, via=via ) }
    logfile.write("Done MACS.\n");logfile.flush()
    peak_list = {}
    chrlist = assembly.chrmeta
## select only peaks with p-val <= 1e-0.6 = .25 => score = -10log10(p) >= 6
    _select = {'score':(6,sys.maxint)}
    _fields = ['chr','start','end','name','score']
    for i,name in enumerate(names['tests']):
        if len(names['controls']) < 2:
            ctrl = (name,names['controls'][0])
            macsbed = track(processed['macs'][ctrl]+"_summits.bed",
                            chrmeta=chrlist, fields=_fields).read(selection=_select)
        else:
            macsbed = concatenate([apply(track(processed['macs'][(name,x)]+"_summits.bed",
                                         chrmeta=chrlist, fields=_fields).read(selection=_select),
                                         'name', lambda __n,_n=xn: "%s:%i" %(__n,_n))
                                   for xn,x in enumerate(names['controls'])])
        ##############################
        macs_neighb = neighborhood( macsbed, before_start=150, after_end=150 )
        peak_list[name] = unique_filename_in()+".sql"
        macs_final = track( peak_list[name], chrmeta=chrlist,
                            info={'datatype':'qualitative'},
                            fields=['start','end','name','score'] )
        macs_final.write(fusion(macs_neighb),clip=True)
        macs_final.close()
        ##############################

    merged_wig = {}
    options['read_extension'] = int(options.get('read_extension') or read_length[0])
    if options['read_extension'] < 1: options['read_extension'] = read_length[0]
    make_wigs = merge_strands >= 0 or options['read_extension']>100
    if options['read_extension'] > 100: options['read_extension'] = 50
    for gid,mapped in mapseq_files.iteritems():
#            if groups[gid]['control']: continue
        group_name = groups[gid]['name']
        wig = []
        for m in mapped.values():
            if make_wigs or not('wig' in m) or len(m['wig'])<2:
                output = mapseq.parallel_density_sql( ex, m["bam"], assembly.chrmeta,
                                                      nreads=m["stats"]["total"],
                                                      merge=-1, read_extension=options['read_extension'],
                                                      convert=False,
                                                      b2w_args=b2w_args, via=via )
                wig.append(dict((s,output+s+'.sql') for s in suffixes))
            else:
                wig.append(m['wig'])
        if len(wig) > 1:
            merged_wig[group_name] = dict((s,merge_sql(ex, [x[s] for x in wig], via=via))
                                          for s in suffixes)
        else:
            merged_wig[group_name] = wig[0]

    if peak_deconvolution:
        ##############################
        def _filter_deconv( stream, pval ):
            ferr = re.compile(r';FERR=([\d\.]+)$')
            return FeatureStream( ((x[0],)+((x[2]+x[1])/2-150,(x[2]+x[1])/2+150)+x[3:] 
                                   for x in stream 
                                   if "FERR=" in x[3] and float(ferr.search(x[3]).groups()[0]) <= pval), 
                                  fields=stream.fields )
        ##############################
        processed['deconv'] = {}
        for name in names['tests']:
            logfile.write(name[1]+" deconvolution.\n");logfile.flush()
            if len(names['controls']) < 2:
                ctrl = (name,names['controls'][0])
                macsbed = processed['macs'][ctrl]+"_peaks.bed"
            else:
                macsbed = intersect_many_bed( ex, [processed['macs'][(name,x)]+"_peaks.bed"
                                                   for x in names['controls']], via=via )
            deconv = run_deconv( ex, merged_wig[name[1]], macsbed, assembly.chrmeta,
                                 options['read_extension'], script_path, via=via )
            peak_list[name] = unique_filename_in()+".bed"
            trbed = track(deconv['peaks']).read()
            with track(peak_list[name], chrmeta=chrlist, fields=trbed.fields) as bedfile:
                bedfile.write(fusion(_filter_deconv(trbed,0.65)))
            ex.add(deconv['peaks'],
                   description=set_file_descr(name[1]+'_peaks.sql', type='sql',
                                              step='deconvolution', groupId=name[0]))
            ex.add(deconv['profile'],
                   description=set_file_descr(name[1]+'_deconv.sql', type='sql',
                                              step='deconvolution',  groupId=name[0]))
            bigwig = unique_filename_in()
            try:
                convert(deconv['profile'],(bigwig,"bigWig"))
                ex.add(bigwig,
                       description=set_file_descr(name[1]+'_deconv.bw', type='bigWig',
                                                  ucsc='1', step='deconvolution',
                                                  groupId=name[0]))
            except OSError as e:
                logfile.write(str(e));logfile.flush()
            ex.add(deconv['pdf'],
                   description=set_file_descr(name[1]+'_deconv.pdf', type='pdf',
                                              step='deconvolution', groupId=name[0]))
            processed['deconv'][name] = deconv

    ##############################
    def _join_macs( stream, xlsl, _f ):
        def _macs_row(_s):
            for _p in _s:
                for _n in _p[3].split("|"):
                    if len(xlsl) == 1:
                        nb = int(_n.split(";")[0][13:]) if _n[:3] == "ID=" else int(_n[10:])
                        yield _p+xlsl[0][nb-1][1:]
                    else:
                        nb = _n.split(";")[0][13:] if _n[:3] == "ID=" else _n[10:]
                        nb = nb.split(":")
                        yield _p+xlsl[int(nb[1])][int(nb[0])-1][1:]
        return FeatureStream( _macs_row(stream), fields=_f )
    ##############################
    peakfile_list = []
    for name, plist in peak_list.iteritems():
        ptrack = track(plist,chrmeta=chrlist,fields=["chr","start","end","name","score"])
        peakfile = unique_filename_in()
        xlsh, xlsl = parse_MACS_xls([processed['macs'][(name,_c)]+"_peaks.xls" for _c in names['controls']])
        try:
###### if assembly doesn't have annotations, we skip the "getNearestFeature" but still go through "_join_macs"
            assembly.gene_track()
            _fields = ['chr','start','end','name','score','gene','location_type','distance']\
                +["MACS_%s"%h for h in xlsh[1:5]]+xlsh[5:]
            peakout = track(peakfile, format='txt', chrmeta=chrlist, fields=_fields)
            peakout.make_header("#"+"\t".join(['chromosome','start','end','info','peak_height','gene(s)','location_type','distance']+_fields[8:]))
            for chrom in assembly.chrnames:
                _feat = assembly.gene_track(chrom)
                peakout.write(_join_macs(getNearestFeature(ptrack.read(selection=chrom),_feat),
                                         xlsl, _fields), mode='append')
        except ValueError:
            _fields = ['chr','start','end','name','score']+["MACS_%s"%h for h in xlsh[1:5]]+xlsh[5:]
            peakout = track(peakfile, format='txt', chrmeta=chrlist, fields=_fields)
            peakout.make_header("#"+"\t".join(['chromosome','start','end','info','peak_height']+_fields[8:]))
            for chrom in assembly.chrnames:
                peakout.write(_join_macs(ptrack.read(selection=chrom), xlsl, _fields), mode='append')
        peakout.close()
        gzipfile(ex,peakfile)
        peakfile_list.append(track(peakfile+".gz", format='txt', fields=_fields))
        ex.add(peakfile+".gz",
               description=set_file_descr(name[1]+'_annotated_peaks.txt.gz',type='text',
                                          step='annotation',groupId=name[0]))
    stracks = [track(wig,info={'name':name+"_"+st}) 
               for name,wigdict in merged_wig.iteritems() for st,wig in wigdict.iteritems()]
    tablefile = unique_filename_in()
    with open(tablefile,"w") as _tf:
        _pnames = ["MACS_%s_vs_%s" %(_s[1],_c[1]) if _c[1] else "MACS_%s" %_s[1]
                   for _s in names['tests'] for _c in names['controls']]
        _tf.write("\t".join(['#chromosome','start','end',]+_pnames+[s.name for s in stracks])+"\n")
#### need to do something about peak origin (split names, write to separate columns?)
    for chrom in assembly.chrnames:
        pk_lst = [apply(pt.read(chrom,fields=['chr','start','end','name']),
                        'name', lambda __n,_n=npt: "%s:%i" %(__n,_n))
                  for npt,pt in enumerate(peakfile_list)]
        features = fusion(concatenate(pk_lst, fields=['chr','start','end','name'], 
                                      remove_duplicates=True, group_by=['chr','start','end']))
        sread = [sig.read(chrom) for sig in stracks]
        quantifs = score_by_feature(sread, features, method='sum')
        nidx = quantifs.fields.index('name')
        _ns = len(tests)
        _nc = len(controls)
        with open(tablefile,"a") as _tf:
            for row in quantifs:
                pcols = ['']*_ns*_nc
                _rnsplit = row[nidx].split(":")
                _n1 = _rnsplit[0]
                _k = 0
                while ( _k < len(_rnsplit)-1-int(_nc>1) ):
                    if _nc > 1:
                        _k += 2
                        _n2 = _rnsplit[_k-1]
                        _n = _rnsplit[_k].split("|")
                        pcols[int(_n[0])*_nc+int(_n2)] = _n1
                    else:
                        _k += 1
                        _n = _rnsplit[_k].split("|")
                        pcols[int(_n[0])] = _n1
                    _n1 = "|".join(_n[1:])
                _tf.write("\t".join(str(tt) for tt in row[:nidx]+tuple(pcols)+row[nidx+1:])+"\n")
    gzipfile(ex,tablefile)
    ex.add(tablefile+".gz",
           description=set_file_descr('Combined_peak_quantifications.txt.gz',type='text',
                                      step='summary'))

    if run_meme:
        from bbcflib.motif import parallel_meme
        logfile.write("Starting MEME.\n");logfile.flush()
        processed['meme'] = parallel_meme( ex, assembly,
                                           peak_list.values(), name=peak_list.keys(),
                                           chip=True, meme_args=['-meme-nmotifs','4','-meme-mod','zoops'],
                                           via=via )
    return processed
Пример #4
0
def chipseq_workflow(ex,
                     job_or_dict,
                     assembly,
                     script_path='',
                     logfile=sys.stdout,
                     via='lsf'):
    """Runs a chipseq workflow over bam files obtained by mapseq. Will optionally run ``macs`` and 'run_deconv'.

    :param ex: a 'bein' execution environment to run jobs in,

    :param job_or_dict: a 'Frontend' 'job' object, or a dictionary with key 'groups', 'files' and 'options' if applicable,

    :param assembly: a genrep.Assembly object,

    :param script_path: only needed if 'run_deconv' is in the job options, must point to the location of the R scripts.

    Defaults ``macs`` parameters (overriden by ``job_or_dict['options']['macs_args']``) are set as follows:

    * ``'-bw'``: 200 ('bandwith')

    * ``'-m'``: 10,100 ('minimum and maximum enrichments relative to background or control')

    The enrichment bounds will be computed from a Poisson threshold *T*, if available, as *(min(30,5*(T+1)),50*(T+1))*.

    Returns a tuple of a dictionary with keys *group_id* from the job groups, *macs* and *deconv* if applicable and values file description dictionaries and a dictionary of *group_ids* to *names* used in file descriptions.
"""
    options = {}
    if logfile is None: logfile = sys.stdout
    if isinstance(job_or_dict, frontend.Job):
        options = job_or_dict.options
        groups = job_or_dict.groups
        mapseq_files = job_or_dict.files
    elif isinstance(job_or_dict, dict) and 'groups' in job_or_dict:
        if 'options' in job_or_dict:
            options = job_or_dict['options']
        groups = job_or_dict['groups']
        for gid in groups.keys():
            if not ('name' in groups[gid]):
                groups[gid]['name'] = gid
        mapseq_files = job_or_dict.get('files', {})
    else:
        raise TypeError(
            "job_or_dict must be a frontend. Job object or a dictionary with key 'groups'."
        )
    merge_strands = int(options.get('merge_strands', -1))
    suffixes = ["fwd", "rev"]
    peak_deconvolution = options.get('peak_deconvolution', False)
    if isinstance(peak_deconvolution, basestring):
        peak_deconvolution = peak_deconvolution.lower() in ['1', 'true', 't']
    run_meme = options.get('run_meme', False)
    if isinstance(run_meme, basestring):
        run_meme = run_meme.lower() in ['1', 'true', 't']
    macs_args = options.get('macs_args', ["--bw", "200"])
    b2w_args = options.get('b2w_args', [])
    if not (isinstance(mapseq_files, dict)):
        raise TypeError("Mapseq_files must be a dictionary.")
    tests = []
    controls = []
    names = {'tests': [], 'controls': []}
    read_length = []
    p_thresh = {}
    for gid, mapped in mapseq_files.iteritems():
        group_name = groups[gid]['name']
        if not (isinstance(mapped, dict)):
            raise TypeError(
                "Mapseq_files values must be dictionaries with keys *run_ids* or 'bam'."
            )
        if 'bam' in mapped:
            mapped = {'_': mapped}
        futures = {}
        ptruns = []
        for k in mapped.keys():
            if not 'libname' in mapped[k]:
                mapped[k]['libname'] = group_name + "_" + str(k)
            if not 'stats' in mapped[k]:
                futures[k] = mapseq.bamstats.nonblocking(ex,
                                                         mapped[k]["bam"],
                                                         via=via)
            if mapped[k].get('poisson_threshold', -1) > 0:
                ptruns.append(mapped[k]['poisson_threshold'])
        if len(ptruns) > 0:
            p_thresh['group_name'] = sum(ptruns) / len(ptruns)
        for k in futures.keys():
            mapped[k]['stats'] = f.wait()
        if len(mapped) > 1:
            bamfile = mapseq.merge_bam(ex, [m['bam'] for m in mapped.values()])
        else:
            bamfile = mapped.values()[0]['bam']
        if groups[gid]['control']:
            controls.append(bamfile)
            names['controls'].append((gid, group_name))
        else:
            tests.append(bamfile)
            names['tests'].append((gid, group_name))
            read_length.append(mapped.values()[0]['stats']['read_length'])
    genome_size = mapped.values()[0]['stats']['genome_size']
    if len(controls) < 1:
        controls = [None]
        names['controls'] = [(0, None)]
    logfile.write("Starting MACS.\n")
    logfile.flush()
    processed = {
        'macs':
        add_macs_results(ex,
                         read_length,
                         genome_size,
                         tests,
                         ctrlbam=controls,
                         name=names,
                         poisson_threshold=p_thresh,
                         macs_args=macs_args,
                         via=via)
    }
    logfile.write("Done MACS.\n")
    logfile.flush()
    peak_list = {}
    chrlist = assembly.chrmeta
    ## select only peaks with p-val <= 1e-0.6 = .25 => score = -10log10(p) >= 6
    _select = {'score': (6, sys.maxint)}
    _fields = ['chr', 'start', 'end', 'name', 'score']
    for i, name in enumerate(names['tests']):
        if len(names['controls']) < 2:
            ctrl = (name, names['controls'][0])
            macsbed = track(processed['macs'][ctrl] + "_summits.bed",
                            chrmeta=chrlist,
                            fields=_fields).read(selection=_select)
        else:
            macsbed = concatenate([
                apply(track(processed['macs'][(name, x)] + "_summits.bed",
                            chrmeta=chrlist,
                            fields=_fields).read(selection=_select),
                      'name',
                      lambda __n, _n=xn: "%s:%i" % (__n, _n))
                for xn, x in enumerate(names['controls'])
            ])
        ##############################
        macs_neighb = neighborhood(macsbed, before_start=150, after_end=150)
        peak_list[name] = unique_filename_in() + ".sql"
        macs_final = track(peak_list[name],
                           chrmeta=chrlist,
                           info={'datatype': 'qualitative'},
                           fields=['start', 'end', 'name', 'score'])
        macs_final.write(fusion(macs_neighb), clip=True)
        macs_final.close()
        ##############################

    merged_wig = {}
    options['read_extension'] = int(
        options.get('read_extension') or read_length[0])
    if options['read_extension'] < 1:
        options['read_extension'] = read_length[0]
    make_wigs = merge_strands >= 0 or options['read_extension'] > 100
    if options['read_extension'] > 100: options['read_extension'] = 50
    for gid, mapped in mapseq_files.iteritems():
        #            if groups[gid]['control']: continue
        group_name = groups[gid]['name']
        wig = []
        for m in mapped.values():
            if make_wigs or not ('wig' in m) or len(m['wig']) < 2:
                output = mapseq.parallel_density_sql(
                    ex,
                    m["bam"],
                    assembly.chrmeta,
                    nreads=m["stats"]["total"],
                    merge=-1,
                    read_extension=options['read_extension'],
                    convert=False,
                    b2w_args=b2w_args,
                    via=via)
                wig.append(dict((s, output + s + '.sql') for s in suffixes))
            else:
                wig.append(m['wig'])
        if len(wig) > 1:
            merged_wig[group_name] = dict(
                (s, merge_sql(ex, [x[s] for x in wig], via=via))
                for s in suffixes)
        else:
            merged_wig[group_name] = wig[0]

    if peak_deconvolution:
        ##############################
        def _filter_deconv(stream, pval):
            ferr = re.compile(r';FERR=([\d\.]+)$')
            return FeatureStream(
                ((x[0], ) + ((x[2] + x[1]) / 2 - 150,
                             (x[2] + x[1]) / 2 + 150) + x[3:]
                 for x in stream if "FERR=" in x[3]
                 and float(ferr.search(x[3]).groups()[0]) <= pval),
                fields=stream.fields)

        ##############################
        processed['deconv'] = {}
        for name in names['tests']:
            logfile.write(name[1] + " deconvolution.\n")
            logfile.flush()
            if len(names['controls']) < 2:
                ctrl = (name, names['controls'][0])
                macsbed = processed['macs'][ctrl] + "_peaks.bed"
            else:
                macsbed = intersect_many_bed(ex, [
                    processed['macs'][(name, x)] + "_peaks.bed"
                    for x in names['controls']
                ],
                                             via=via)
            deconv = run_deconv(ex,
                                merged_wig[name[1]],
                                macsbed,
                                assembly.chrmeta,
                                options['read_extension'],
                                script_path,
                                via=via)
            peak_list[name] = unique_filename_in() + ".bed"
            trbed = track(deconv['peaks']).read()
            with track(peak_list[name], chrmeta=chrlist,
                       fields=trbed.fields) as bedfile:
                bedfile.write(fusion(_filter_deconv(trbed, 0.65)))
            ex.add(deconv['peaks'],
                   description=set_file_descr(name[1] + '_peaks.sql',
                                              type='sql',
                                              step='deconvolution',
                                              groupId=name[0]))
            ex.add(deconv['profile'],
                   description=set_file_descr(name[1] + '_deconv.sql',
                                              type='sql',
                                              step='deconvolution',
                                              groupId=name[0]))
            bigwig = unique_filename_in()
            try:
                convert(deconv['profile'], (bigwig, "bigWig"))
                ex.add(bigwig,
                       description=set_file_descr(name[1] + '_deconv.bw',
                                                  type='bigWig',
                                                  ucsc='1',
                                                  step='deconvolution',
                                                  groupId=name[0]))
            except OSError as e:
                logfile.write(str(e))
                logfile.flush()
            ex.add(deconv['pdf'],
                   description=set_file_descr(name[1] + '_deconv.pdf',
                                              type='pdf',
                                              step='deconvolution',
                                              groupId=name[0]))
            processed['deconv'][name] = deconv

    ##############################
    def _join_macs(stream, xlsl, _f):
        def _macs_row(_s):
            for _p in _s:
                for _n in _p[3].split("|"):
                    if len(xlsl) == 1:
                        nb = int(
                            _n.split(";")[0][13:]) if _n[:3] == "ID=" else int(
                                _n[10:])
                        yield _p + xlsl[0][nb - 1][1:]
                    else:
                        nb = _n.split(
                            ";")[0][13:] if _n[:3] == "ID=" else _n[10:]
                        nb = nb.split(":")
                        yield _p + xlsl[int(nb[1])][int(nb[0]) - 1][1:]

        return FeatureStream(_macs_row(stream), fields=_f)

    ##############################
    peakfile_list = []
    for name, plist in peak_list.iteritems():
        ptrack = track(plist,
                       chrmeta=chrlist,
                       fields=["chr", "start", "end", "name", "score"])
        peakfile = unique_filename_in()
        xlsh, xlsl = parse_MACS_xls([
            processed['macs'][(name, _c)] + "_peaks.xls"
            for _c in names['controls']
        ])
        try:
            ###### if assembly doesn't have annotations, we skip the "getNearestFeature" but still go through "_join_macs"
            assembly.gene_track()
            _fields = ['chr','start','end','name','score','gene','location_type','distance']\
                +["MACS_%s"%h for h in xlsh[1:5]]+xlsh[5:]
            peakout = track(peakfile,
                            format='txt',
                            chrmeta=chrlist,
                            fields=_fields)
            peakout.make_header("#" + "\t".join([
                'chromosome', 'start', 'end', 'info', 'peak_height', 'gene(s)',
                'location_type', 'distance'
            ] + _fields[8:]))
            for chrom in assembly.chrnames:
                _feat = assembly.gene_track(chrom)
                peakout.write(_join_macs(
                    getNearestFeature(ptrack.read(selection=chrom), _feat),
                    xlsl, _fields),
                              mode='append')
        except ValueError:
            _fields = ['chr', 'start', 'end', 'name', 'score'
                       ] + ["MACS_%s" % h for h in xlsh[1:5]] + xlsh[5:]
            peakout = track(peakfile,
                            format='txt',
                            chrmeta=chrlist,
                            fields=_fields)
            peakout.make_header("#" + "\t".join(
                ['chromosome', 'start', 'end', 'info', 'peak_height'] +
                _fields[8:]))
            for chrom in assembly.chrnames:
                peakout.write(_join_macs(ptrack.read(selection=chrom), xlsl,
                                         _fields),
                              mode='append')
        peakout.close()
        gzipfile(ex, peakfile)
        peakfile_list.append(
            track(peakfile + ".gz", format='txt', fields=_fields))
        ex.add(peakfile + ".gz",
               description=set_file_descr(name[1] + '_annotated_peaks.txt.gz',
                                          type='text',
                                          step='annotation',
                                          groupId=name[0]))
    stracks = [
        track(wig, info={'name': name + "_" + st})
        for name, wigdict in merged_wig.iteritems()
        for st, wig in wigdict.iteritems()
    ]
    tablefile = unique_filename_in()
    with open(tablefile, "w") as _tf:
        _pnames = [
            "MACS_%s_vs_%s" % (_s[1], _c[1]) if _c[1] else "MACS_%s" % _s[1]
            for _s in names['tests'] for _c in names['controls']
        ]
        _tf.write("\t".join([
            '#chromosome',
            'start',
            'end',
        ] + _pnames + [s.name for s in stracks]) + "\n")
#### need to do something about peak origin (split names, write to separate columns?)
    for chrom in assembly.chrnames:
        pk_lst = [
            apply(pt.read(chrom, fields=['chr', 'start', 'end', 'name']),
                  'name',
                  lambda __n, _n=npt: "%s:%i" % (__n, _n))
            for npt, pt in enumerate(peakfile_list)
        ]
        features = fusion(
            concatenate(pk_lst,
                        fields=['chr', 'start', 'end', 'name'],
                        remove_duplicates=True,
                        group_by=['chr', 'start', 'end']))
        sread = [sig.read(chrom) for sig in stracks]
        quantifs = score_by_feature(sread, features, method='sum')
        nidx = quantifs.fields.index('name')
        _ns = len(tests)
        _nc = len(controls)
        with open(tablefile, "a") as _tf:
            for row in quantifs:
                pcols = [''] * _ns * _nc
                _rnsplit = row[nidx].split(":")
                _n1 = _rnsplit[0]
                _k = 0
                while (_k < len(_rnsplit) - 1 - int(_nc > 1)):
                    if _nc > 1:
                        _k += 2
                        _n2 = _rnsplit[_k - 1]
                        _n = _rnsplit[_k].split("|")
                        pcols[int(_n[0]) * _nc + int(_n2)] = _n1
                    else:
                        _k += 1
                        _n = _rnsplit[_k].split("|")
                        pcols[int(_n[0])] = _n1
                    _n1 = "|".join(_n[1:])
                _tf.write("\t".join(
                    str(tt)
                    for tt in row[:nidx] + tuple(pcols) + row[nidx + 1:]) +
                          "\n")
    gzipfile(ex, tablefile)
    ex.add(tablefile + ".gz",
           description=set_file_descr('Combined_peak_quantifications.txt.gz',
                                      type='text',
                                      step='summary'))

    if run_meme:
        from bbcflib.motif import parallel_meme
        logfile.write("Starting MEME.\n")
        logfile.flush()
        processed['meme'] = parallel_meme(
            ex,
            assembly,
            peak_list.values(),
            name=peak_list.keys(),
            chip=True,
            meme_args=['-meme-nmotifs', '4', '-meme-mod', 'zoops'],
            via=via)
    return processed