Пример #1
0
def adjoint_born(model,
                 rec_coords,
                 rec_data,
                 u=None,
                 op_forward=None,
                 is_residual=False,
                 space_order=8,
                 nb=40,
                 isic=False,
                 dt=None,
                 n_checkpoints=None,
                 maxmem=None):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, rho, damp = model.m, model.rho, model.damp

    # Create adjoint wavefield and gradient
    v = TimeFunction(name='v',
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order)
    gradient = Function(name='gradient', grid=model.grid)

    # Set up PDE and rearrange
    vlaplace, rho = acoustic_laplacian(v, rho)
    H = symbols('H')
    eqn = m / rho * v.dt2 - H - damp * v.dt
    stencil = solve(eqn, v.backward, simplify=False, rational=False)[0]
    expression = [Eq(v.backward, stencil.subs({H: vlaplace}))]

    # Data at receiver locations as adjoint source
    rec_g = Receiver(name='rec_g',
                     grid=model.grid,
                     ntime=nt,
                     coordinates=rec_coords)
    if op_forward is None:
        rec_g.data[:] = rec_data[:]
    adj_src = rec_g.inject(field=v.backward,
                           offset=model.nbpml,
                           expr=rec_g * rho * dt**2 / m)

    # Gradient update
    if u is None:
        u = TimeFunction(name='u',
                         grid=model.grid,
                         time_order=2,
                         space_order=space_order)
    if isic is not True:
        gradient_update = [Eq(gradient, gradient - dt * u.dt2 / rho * v)]
    else:
        # sum u.dx * v.dx fo x in dimensions.
        # space_order//2
        diff_u_v = sum([
            first_derivative(u, dim=d, order=space_order // 2) *
            first_derivative(v, dim=d, order=space_order // 2)
            for d in u.space_dimensions
        ])
        gradient_update = [
            Eq(gradient, gradient - dt * (u * v.dt2 * m + diff_u_v) / rho)
        ]

    # Create operator and run
    set_log_level('ERROR')
    expression += adj_src + gradient_update
    subs = model.spacing_map
    subs[u.grid.time_dim.spacing] = dt
    op = Operator(expression,
                  subs=subs,
                  dse='advanced',
                  dle='advanced',
                  name="Gradient%s" % randint(1e5))

    # Optimal checkpointing
    if op_forward is not None:
        rec = Receiver(name='rec',
                       grid=model.grid,
                       ntime=nt,
                       coordinates=rec_coords)
        cp = DevitoCheckpoint([u])
        if maxmem is not None:
            n_checkpoints = int(
                np.floor(maxmem * 10**6 / (cp.size * u.data.itemsize)))
        wrap_fw = CheckpointOperator(op_forward, u=u, m=model.m, rec=rec)
        wrap_rev = CheckpointOperator(op, u=u, v=v, m=model.m, rec_g=rec_g)

        # Run forward
        wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt - 2)
        wrp.apply_forward()

        # Residual and gradient
        if is_residual is True:  # input data is already the residual
            rec_g.data[:] = rec_data[:]
        else:
            rec_g.data[:] = rec.data[:] - rec_data[:]  # input is observed data
            fval = .5 * np.dot(rec_g.data[:].flatten(),
                               rec_g.data[:].flatten()) * dt
        wrp.apply_reverse()
    else:
        op()
    clear_cache()

    if op_forward is not None and is_residual is not True:
        return fval, gradient.data
    else:
        return gradient.data
Пример #2
0
def adjoint_born(model,
                 rec_coords,
                 rec_data,
                 u=None,
                 op_forward=None,
                 is_residual=False,
                 space_order=8,
                 nb=40,
                 isic=False,
                 dt=None):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, damp = model.m, model.damp

    # Create adjoint wavefield and gradient
    v = TimeFunction(name='v',
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order)
    gradient = Function(name='gradient', grid=model.grid)

    # Set up PDE and rearrange
    eqn = m * v.dt2 - v.laplace - damp * v.dt
    stencil = solve(eqn, v.backward)[0]
    expression = [Eq(v.backward, stencil)]

    # Data at receiver locations as adjoint source
    rec_g = Receiver(name='rec_g',
                     grid=model.grid,
                     ntime=nt,
                     coordinates=rec_coords)
    if op_forward is None:
        rec_g.data[:] = rec_data[:]
    adj_src = rec_g.inject(field=v.backward,
                           offset=model.nbpml,
                           expr=rec_g * dt**2 / m)

    # Gradient update
    if u is None:
        u = TimeFunction(name='u',
                         grid=model.grid,
                         time_order=2,
                         space_order=space_order)

    if isic is not True:
        gradient_update = [Eq(gradient, gradient - u * v.dt2)
                           ]  # zero-lag cross-correlation imaging condition
    else:
        # linearized inverse scattering imaging condition (Op't Root et al. 2010; Whitmore and Crawley 2012)
        if len(model.shape) == 2:
            gradient_update = [
                Eq(gradient,
                   gradient - (u * v.dt2 * m + u.dx * v.dx + u.dy * v.dy))
            ]
        else:
            gradient_update = [
                Eq(
                    gradient, gradient -
                    (u * v.dt2 * m + u.dx * v.dx + u.dy * v.dy + u.dz * v.dz))
            ]

    # Create operator and run
    set_log_level('ERROR')
    expression += adj_src + gradient_update
    op = Operator(expression,
                  subs=model.spacing_map,
                  dse='advanced',
                  dle='advanced',
                  name="Gradient%s" % randint(1e5))

    # Optimal checkpointing
    if op_forward is not None:
        rec = Receiver(name='rec',
                       grid=model.grid,
                       ntime=nt,
                       coordinates=rec_coords)
        cp = DevitoCheckpoint([u])
        n_checkpoints = None
        wrap_fw = CheckpointOperator(op_forward,
                                     u=u,
                                     m=model.m.data,
                                     rec=rec,
                                     dt=dt)
        wrap_rev = CheckpointOperator(op,
                                      u=u,
                                      v=v,
                                      m=model.m.data,
                                      rec_g=rec_g,
                                      dt=dt)

        # Run forward
        wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt - 2)
        wrp.apply_forward()

        # Residual and gradient
        if is_residual is True:  # input data is already the residual
            rec_g.data[:] = rec_data[:]
        else:
            rec_g.data[:] = rec.data[:] - rec_data[:]  # input is observed data
            fval = .5 * np.linalg.norm(rec_g.data[:])**2
        wrp.apply_reverse()
    else:
        op(dt=dt)
    clear_cache()

    if op_forward is not None and is_residual is not True:
        return fval, gradient.data
    else:
        return gradient.data
Пример #3
0
def J_adjoint_checkpointing(model,
                            src_coords,
                            wavelet,
                            rec_coords,
                            recin,
                            space_order=8,
                            is_residual=False,
                            n_checkpoints=None,
                            maxmem=None,
                            return_obj=False,
                            isic=False,
                            ws=None,
                            t_sub=1):
    """
    Jacobian (adjoint fo born modeling operator) operator on a shot record
    as a source (i.e data residual). Outputs the gradient with Checkpointing.

    Parameters
    ----------
    model: Model
        Physical model
    src_coords: Array
        Coordiantes of the source(s)
    wavelet: Array
        Source signature
    rec_coords: Array
        Coordiantes of the receiver(s)
    recin: Array
        Receiver data
    space_order: Int (optional)
        Spatial discretization order, defaults to 8
    checkpointing: Bool
        Whether or not to use checkpointing
    n_checkpoints: Int
        Number of checkpoints for checkpointing
    maxmem: Float
        Maximum memory to use for checkpointing
    isic : Bool
        Whether or not to use ISIC imaging condition
    ws : Array
        Extended source spatial distribution
    is_residual: Bool
        Whether to treat the input as the residual or as the observed data

    Returns
    ----------
     Array
        Adjoint jacobian on the input data (gradient)
    """
    # Optimal checkpointing
    op_f, u, rec_g = forward(model,
                             src_coords,
                             rec_coords,
                             wavelet,
                             space_order=space_order,
                             return_op=True,
                             ws=ws)
    op, g, v = gradient(model,
                        recin,
                        rec_coords,
                        u,
                        space_order=space_order,
                        return_op=True,
                        isic=isic)

    nt = wavelet.shape[0]
    rec = Receiver(name='rec',
                   grid=model.grid,
                   ntime=nt,
                   coordinates=rec_coords)
    cp = DevitoCheckpoint([uu for uu in as_tuple(u)])
    if maxmem is not None:
        memsize = (cp.size * u.data.itemsize)
        n_checkpoints = int(np.floor(maxmem * 10**6 / memsize))
    # Op arguments
    uk = {uu.name: uu for uu in as_tuple(u)}
    vk = {**uk, **{vv.name: vv for vv in as_tuple(v)}}
    uk.update({'rcv%s' % as_tuple(u)[0].name: rec_g})
    vk.update({'src%s' % as_tuple(v)[0].name: rec})
    # Wrapped ops
    wrap_fw = CheckpointOperator(op_f, vp=model.vp, **uk)
    wrap_rev = CheckpointOperator(op, vp=model.vp, **vk)

    # Run forward
    wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt - 2)
    wrp.apply_forward()

    # Residual and gradient
    if is_residual is True:  # input data is already the residual
        rec.data[:] = recin[:]
    else:
        rec.data[:] = rec.data[:] - recin[:]  # input is observed data

    wrp.apply_reverse()

    if return_obj:
        return .5 * model.critical_dt * norm(rec)**2, g.data
    return g.data
def adjoint_born(model, rec_coords, rec_data, u=None, op_forward=None, is_residual=False,
                 space_order=8, isic=False, dt=None, n_checkpoints=None, maxmem=None,
                 free_surface=False, tsub_factor=1, checkpointing=False):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, rho, damp = model.m, model.rho, model.damp

    # Create adjoint wavefield and gradient
    v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order)
    gradient = Function(name='gradient', grid=model.grid)

    # Set up PDE and rearrange
    vlaplace, rho = acoustic_laplacian(v, rho)
    stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * vlaplace)
    expression = [Eq(v.backward, stencil)]
    # Data at receiver locations as adjoint source
    rec_g = Receiver(name='rec_g', grid=model.grid, ntime=nt, coordinates=rec_coords)
    if op_forward is None:
        rec_g.data[:] = rec_data[:]
    adj_src = rec_g.inject(field=v.backward, expr=rec_g * rho * dt**2 / m)

    # Gradient update
    if u is None:
        u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order)
    if isic is not True:
        gradient_update = [Inc(gradient, - dt * u.dt2 / rho * v)]
    else:
        # sum u.dx * v.dx fo x in dimensions.
        # space_order//2
        diff_u_v = sum([first_derivative(u, dim=d, fd_order=space_order//2)*
                        first_derivative(v, dim=d, fd_order=space_order//2)
                        for d in u.space_dimensions])
        gradient_update = [Inc(gradient, - tsub_factor * dt * (u * v.dt2 * m + diff_u_v) / rho)]

    # Create operator and run

    # Free surface
    if free_surface is True:
        expression += freesurface(v, space_order//2, model.nbpml, forward=False)

    expression += adj_src + gradient_update
    subs = model.spacing_map
    subs[u.grid.time_dim.spacing] = dt
    op = Operator(expression, subs=subs, dse='advanced', dle='advanced')

    # Optimal checkpointing
    summary1 = None
    summary2 = None
    if op_forward is not None and checkpointing is True:
        rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords)
        cp = DevitoCheckpoint([u])
        if maxmem is not None:
            n_checkpoints = int(np.floor(maxmem * 10**6 / (cp.size * u.data.itemsize)))
        wrap_fw = CheckpointOperator(op_forward, u=u, m=model.m, rec=rec)
        wrap_rev = CheckpointOperator(op, u=u, v=v, m=model.m, rec_g=rec_g)

        # Run forward
        wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt-2)
        wrp.apply_forward()

        # Residual and gradient
        if is_residual is True:  # input data is already the residual
            rec_g.data[:] = rec_data[:]
        else:
            rec_g.data[:] = rec.data[:] - rec_data[:]   # input is observed data
            fval = .5*np.dot(rec_g.data[:].flatten(), rec_g.data[:].flatten()) * dt
        wrp.apply_reverse()

    elif op_forward is not None and checkpointing is False:

        # Compile first
        cf1 = op_forward.cfunction
        cf2 = op.cfunction

        # Run forward and adjoint
        summary1 = op_forward.apply()
        if is_residual is True:
            rec_g.data[:] = rec_data[:]
        else:
            rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords)
            rec_g.data[:] = rec.data[:] - rec_data[:]
            fval = .5*np.dot(rec_g.data[:].flatten(), rec_g.data[:].flatten()) * dt
        summary2 = op.apply()
    else:
        cf = op.cfunction
        summary1 = op.apply()
    clear_cache()

    if op_forward is not None and is_residual is not True:
        if summary2 is not None:
            return fval, gradient.data, summary1, summary2
        elif summary1 is not None:
            return fval, gradient.data, summary1
        else:
            return fval, gradient.data
    else:
        if summary2 is not None:
            return gradient.data, summary1, summary2
        elif summary1 is not None:
            return gradient.data, summary1
        else:
            return gradient.data