Пример #1
0
 def __init__(self, sess, policy_name, learning_params, curriculum,
              num_features, num_states, num_actions):
     # initialize attributes
     self.sess = sess
     self.learning_params = learning_params
     self.use_double_dqn = learning_params.use_double_dqn
     self.use_priority = learning_params.prioritized_replay
     self.policy_name = policy_name
     self.tabular_case = learning_params.tabular_case
     # This proxy adds the machine state representation to the MDP state
     self.feature_proxy = FeatureProxy(num_features, num_states,
                                       self.tabular_case)
     self.num_actions = num_actions
     self.num_features = self.feature_proxy.get_num_features()
     # create dqn network
     self._create_network(learning_params.lr, learning_params.gamma,
                          learning_params.num_neurons,
                          learning_params.num_hidden_layers)
     # create experience replay buffer
     if self.use_priority:
         self.replay_buffer = PrioritizedReplayBuffer(
             learning_params.buffer_size,
             alpha=learning_params.prioritized_replay_alpha)
         if learning_params.prioritized_replay_beta_iters is None:
             learning_params.prioritized_replay_beta_iters = curriculum.total_steps
         self.beta_schedule = LinearSchedule(
             learning_params.prioritized_replay_beta_iters,
             initial_p=learning_params.prioritized_replay_beta0,
             final_p=1.0)
     else:
         self.replay_buffer = ReplayBuffer(learning_params.buffer_size)
         self.beta_schedule = None
     # count of the number of environmental steps
     self.step = 0
Пример #2
0
    def __init__(self, config, env):
        self.config = config
        self.agent_ids = [a for a in range(config.num_agents)]
        self.env = env
        self.optimizer = tf.keras.optimizers.Adam(self.config.lr)
        self.replay_memory, self.beta_schedule = init_replay_memory(config)

        self.model = init_network(config)
        self.target_model = init_network(config)
        self.model.summary()
        tf.keras.utils.plot_model(self.model, to_file='./model.png')

        if self.config.dueling:
            self.agent_heads = self.build_agent_heads_dueling()
            self.target_agent_heads = self.build_agent_heads_dueling()
            self.agent_heads[0].summary()
            tf.keras.utils.plot_model(self.agent_heads[0], to_file='./agent_heads_model.png')
        else:
            self.agent_heads = self.build_agent_heads()
            self.target_agent_heads = self.build_agent_heads()

        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(schedule_timesteps=int(config.exploration_fraction * config.num_timesteps),
                                          initial_p=1.0, final_p=config.exploration_final_eps)

        if config.load_path is not None:
            self.load_models(config.load_path)

        self.loss = self.nstep_loss
        self.eps = tf.Variable(0.0)
        self.one_hot_agents = tf.expand_dims(tf.one_hot(self.agent_ids, len(self.agent_ids), dtype=tf.float32), axis=1)
        print(f'self.onehot_agent.shape is {self.one_hot_agents.shape}')
    def __init__(self, lp, num_features, num_actions, reward_machine):
        super().__init__()
        # learning parameters
        self.lp = lp
        self.policy_name = 'dqn_network'

        # This proxy adds the machine state representation to the MDP state
        num_states = 1 if reward_machine is None else len(
            reward_machine.get_states())
        self.feature_proxy = FeatureProxy(num_features, num_states)
        self.num_actions = num_actions
        self.num_features = self.feature_proxy.get_num_features()

        # Creating the network
        self.sess = tf.Session()
        self._create_network()

        # create experience replay buffer
        if self.lp.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                lp.buffer_size, alpha=lp.prioritized_replay_alpha)
            if lp.prioritized_replay_beta_iters is None:
                lp.prioritized_replay_beta_iters = lp.train_steps
            self.beta_schedule = LinearSchedule(
                lp.prioritized_replay_beta_iters,
                initial_p=lp.prioritized_replay_beta0,
                final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(lp.buffer_size)
            self.beta_schedule = None

        # count of the number of environmental steps
        self.step = 0
Пример #4
0
    def train_model(self,
                    max_iters=100000,
                    number_of_steps=10,
                    log_path='./log',
                    debug=False):
        tb = TensorBoard(log_path)
        tb.set_model(self.rl_model)

        self.beta_schedule = LinearSchedule(100000, initial_p=0.4, final_p=1.0)
        epsilon = 1.
        for i in range(max_iters):
            if epsilon > 0.1:
                epsilon *= 0.98
            with timer('all', i):
                reward, step, loss = self.train_iterator(
                    debug, i, number_of_steps, epsilon)

            if not debug:
                summary = tf.Summary()
                reward_value = summary.value.add()
                reward_value.simple_value = reward
                reward_value.tag = 'reward'
                step_value = summary.value.add()
                step_value.simple_value = step
                step_value.tag = 'step'
                if len(loss) > 0:
                    loss_value = summary.value.add()
                    loss_value.simple_value = sum(loss) / len(loss)
                    loss_value.tag = 'loss'
                tb.writer.add_summary(summary, i)
                tb.writer.flush()
            #sys.stdout.write('\r'+str(i))
            if (i + 1) % 10000 is 0:
                self.save_model(i / 10000 + 1)
    def __init__(self, lp, num_features, num_actions, reward_machine):
        super().__init__()
        
        # learning parameters
        self.lp = lp 
        self.rm = reward_machine
        self.num_features = num_features
        self.num_actions  = num_actions

        # Creating the network
        self.sess = tf.Session()
        self._create_network()

        # create experience replay buffer
        if self.lp.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(lp.buffer_size, alpha=lp.prioritized_replay_alpha)
            if lp.prioritized_replay_beta_iters is None:
                lp.prioritized_replay_beta_iters = lp.train_steps
            self.beta_schedule = LinearSchedule(lp.prioritized_replay_beta_iters, initial_p=lp.prioritized_replay_beta0, final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(lp.buffer_size)
            self.beta_schedule = None

        # count of the number of environmental steps
        self.step = 0
Пример #6
0
    def __init__(self, config, env):
        # super().__init__()
        self.config = config
        self.env = env
        self.agent_ids = self.get_agent_ids()

        self.replay_memory, self.beta_schedule = self.init_replay_memory()
        self.optimizer = tf.keras.optimizers.Adam(self.config.lr)
        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(schedule_timesteps=int(
            config.exploration_fraction * config.num_timesteps),
                                          initial_p=1.0,
                                          final_p=config.exploration_final_eps)
        self.eps = tf.Variable(0.0)

        self.models, self.target_models = self._init_networks()

        self.agents = [
            Agent(config, self.models[agent_id], self.target_models[agent_id],
                  agent_id) for agent_id in self.agent_ids
        ]
        self.support_z = np.linspace(-5.0, 5.0, self.config.atoms)

        self.fps_zeros = np.zeros(
            (self.config.num_agents, self.config.fp_shape))
Пример #7
0
def create_experience_replay_buffer(buffer_size, use_prioritized_replay, prioritized_replay_alpha, prioritized_replay_beta0, prioritized_replay_beta_iters):
    if use_prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    return replay_buffer, beta_schedule
Пример #8
0
 def init_replay_memory(self):
     """
     :return: replay_buffer, beta_schedule
     """
     if self.config.prioritized_replay:
         replay_buffer = PrioritizedReplayBuffer(self.config.buffer_size, alpha=self.config.prioritized_replay_alpha)
         if self.config.prioritized_replay_beta_iters is None:
             prioritized_replay_beta_iters = self.config.num_timesteps
         beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                        initial_p=self.config.prioritized_replay_beta0, final_p=1.0)
     else:
         replay_buffer = ReplayBuffer(self.config.buffer_size)
         beta_schedule = None
     return replay_buffer, beta_schedule
Пример #9
0
    def __init__(self, config):
        self.writer = SummaryWriter() 
        self.device = 'cuda' if T.cuda.is_available() else 'cpu'

        self.dqn_type = config["dqn-type"]
        self.run_title = config["run-title"]
        self.env = gym.make(config["environment"])

        self.num_states  = np.prod(self.env.observation_space.shape)
        self.num_actions = self.env.action_space.n

        layers = [
            self.num_states, 
            *config["architecture"], 
            self.num_actions
        ]

        self.policy_net = Q_Network(self.dqn_type, layers).to(self.device)
        self.target_net = Q_Network(self.dqn_type, layers).to(self.device)
        self.target_net.load_state_dict(self.policy_net.state_dict())
        self.target_net.eval()

        capacity = config["max-experiences"]
        self.p_replay_eps = config["p-eps"]
        self.prioritized_replay = config["prioritized-replay"]
        self.replay_buffer = PrioritizedReplayBuffer(capacity, config["p-alpha"]) if self.prioritized_replay \
                        else ReplayBuffer(capacity)

        self.beta_scheduler = LinearSchedule(config["episodes"], initial_p=config["p-beta-init"], final_p=1.0)
        self.epsilon_decay = lambda e: max(config["epsilon-min"], e * config["epsilon-decay"])

        self.train_freq = config["train-freq"]
        self.use_soft_update = config["use-soft-update"]
        self.target_update = config["target-update"]
        self.tau = config["tau"]
        self.gamma = config["gamma"]
        self.batch_size = config["batch-size"]
        self.time_step = 0

        self.optim = T.optim.AdamW(self.policy_net.parameters(), lr=config["lr-init"], weight_decay=config["weight-decay"])
        self.lr_scheduler = T.optim.lr_scheduler.StepLR(self.optim, step_size=config["lr-step"], gamma=config["lr-gamma"])
        self.criterion = nn.SmoothL1Loss(reduction="none") # Huber Loss
        self.min_experiences = max(config["min-experiences"], config["batch-size"])

        self.save_path = config["save-path"]
Пример #10
0
    def __init__(self, config, env):
        self.config = config
        self.agent_ids = [a for a in range(config.num_agents)]
        self.env = env
        self.optimizer = tf.keras.optimizers.Adam(self.config.lr)
        self.replay_memory, self.beta_schedule = init_replay_memory(config)

        # Create the schedule for exploration starting from 1.
        self.exploration = LinearSchedule(schedule_timesteps=int(
            config.exploration_fraction * config.num_timesteps),
                                          initial_p=1.0,
                                          final_p=config.exploration_final_eps)

        self.loss = self.nstep_loss
        self.eps = tf.Variable(0.0)

        # init model
        self.network = Network(config)
Пример #11
0
def create_players(env_id, model_dir, exploration_fraction, max_timesteps,
                   exploration_final_eps, param_noise, agents_count):
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)
    policy_path = os.path.join(model_dir, "Policy.pkl")
    player_processes = list()
    player_connections = list()
    for i in range(agents_count):
        process, connection = Player.player_process_factory(
            env_id, policy_path, exploration, param_noise)
        player_processes.append(process)
        player_connections.append(connection)
        time.sleep(1)
        print("agent {} is created".format(i))
    return player_processes, player_connections
Пример #12
0
def init_replay_memory(config):
    """

    :param config: config object containing all parameters and hyper-parameters
    :return: replay_buffer, beta_schedule
    """
    if config.prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(
            config.buffer_size, alpha=config.prioritized_replay_alpha)
        if config.prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = config.num_timesteps
        beta_schedule = LinearSchedule(
            prioritized_replay_beta_iters,
            initial_p=config.prioritized_replay_beta0,
            final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(config.buffer_size)
        beta_schedule = None
    return replay_buffer, beta_schedule
Пример #13
0
    demo_env = gym.wrappers.Monitor(make_test_env(env_name),
                                    MONITOR_DIR,
                                    resume=True,
                                    mode="evaluation",
                                    write_upon_reset=True)
    steps, total_return = play_once(demo_env, 0.05, render=True)
    print("Demo for %d steps, Return %d" % (steps, total_return))
    summary = tf.Summary()
    summary.value.add(tag="demo/return", simple_value=total_return)
    summary.value.add(tag="demo/steps", simple_value=steps)
    demo_env.close()
    return summary


linear_schedule = LinearSchedule(int(EPSILON_STEPS),
                                 final_p=EPSILON_MIN,
                                 initial_p=EPSILON_MAX)
epsilon = linear_schedule.value(session.run(global_step))
# Populate replay buffer
print("Populating replay buffer with epsilon %f..." % epsilon)
while MINIMAL_SAMPLES > replay_buffer.number_of_samples():
    steps, total_return = play_once(env, epsilon, render=False)
    print("Played %d < %d steps" %
          (replay_buffer.number_of_samples(), MINIMAL_SAMPLES))

# Main loop
print("Start Main Loop...")
for n in range(ITERATIONS):
    gstep = tf.train.global_step(session, global_step)
    epsilon = linear_schedule.value(gstep)
    steps, total_return = play_once(env, epsilon)
Пример #14
0
if __name__ == '__main__':
    with U.make_session(num_cpu=8):
        # Create the environment
        env = gym.make("CartPole-v0")
        # Create all the functions necessary to train the model
        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
            q_func=model,
            num_actions=env.action_space.n,
            optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
        )
        # Create the replay buffer
        replay_buffer = ReplayBuffer(50000)
        # Create the schedule for exploration starting from 1 (every action is random) down to
        # 0.02 (98% of actions are selected according to values predicted by the model).
        exploration = LinearSchedule(schedule_timesteps=10000, initial_p=1.0, final_p=0.02)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()

        episode_rewards = [0.0]
        obs = env.reset()
        # for t in itertools.count():
        for t in range(100000):
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs
Пример #15
0
def learn(env,
          seed=None,
          num_agents = 2,
          lr=0.00008,
          total_timesteps=100000,
          buffer_size=2000,
          exploration_fraction=0.2,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=16,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=2000,
          gamma=0.99,
          target_network_update_freq=1000,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
          ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model
    set_global_seeds(seed)
    double_q = True
    grad_norm_clipping = True
    shared_weights = True
    play_test = 1000
    nsteps = 16
    agent_ids = env.agent_ids()

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    print(f'agent_ids {agent_ids}')
    num_actions = env.action_space.n
    print(f'num_actions {num_actions}')

    dqn_agent = MAgent(env, agent_ids, nsteps, lr, replay_buffer, shared_weights, double_q, num_actions,
                           gamma, grad_norm_clipping, param_noise)


    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=dqn_agent.q_network)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        ckpt.restore(manager.latest_checkpoint)
        print("Restoring from {}".format(manager.latest_checkpoint))

    dqn_agent.update_target()

    episode_rewards = [0.0 for i in range(101)]
    saved_mean_reward = None
    obs_all = env.reset()
    obs_shape = obs_all
    reset = True
    done = False

    # Start total timer
    tstart = time.time()
    for t in range(total_timesteps):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:
            update_eps = tf.constant(0.)
            # Compute the threshold such that the KL divergence between perturbed and non-perturbed
            # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
            # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
            # for detailed explanation.
            update_param_noise_threshold = -np.log(
                1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs['update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True

        if t % print_freq == 0:
            time_1000_step = time.time()
            nseconds = time_1000_step - tstart
            tstart = time_1000_step
            print(f'time spend to perform {t-print_freq} to {t} steps is {nseconds} ')
            print('eps update', exploration.value(t))

        mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [], [], [], [], []
        # mb_states = states
        epinfos = []
        for _ in range(nsteps):
            # Given observations, take action and value (V(s))
            obs_ = tf.constant(obs_all)
            # print(f'obs_.shape is {obs_.shape}')
            # obs_ = tf.expand_dims(obs_, axis=1)
            # print(f'obs_.shape is {obs_.shape}')
            actions_list, fps_ = dqn_agent.choose_action(obs_, update_eps=update_eps, **kwargs)
            fps = [[] for _ in agent_ids]
            # print(f'fps_.shape is {np.asarray(fps_).shape}')
            for a in agent_ids:
                fps[a] = np.delete(fps_, a, axis=0)

            # print(fps)
            # print(f'actions_list is {actions_list}')
            # print(f'values_list is {values_list}')

            # Append the experiences
            mb_obs.append(obs_all.copy())
            mb_actions.append(actions_list)
            mb_values.append(fps)
            mb_dones.append([float(done) for _ in range(num_agents)])

            # Take actions in env and look the results
            obs1_all, rews, done, info = env.step(actions_list)
            rews = [np.max(rews) for _ in range(len(rews))]  # for cooperative purpose same reward for every one
            # print(rews)
            mb_rewards.append(rews)
            obs_all = obs1_all
            # print(rewards, done, info)
            maybeepinfo = info[0].get('episode')
            if maybeepinfo: epinfos.append(maybeepinfo)

            episode_rewards[-1] += np.max(rews)
            if done:
                episode_rewards.append(0.0)
                obs_all = env.reset()
                reset = True

        mb_dones.append([float(done) for _ in range(num_agents)])

        # print(f'mb_actions is {mb_actions}')
        # print(f'mb_rewards is {mb_rewards}')
        # print(f'mb_values is {mb_values}')
        # print(f'mb_dones is {mb_dones}')

        mb_obs = np.asarray(mb_obs, dtype=obs_all[0].dtype)
        mb_actions = np.asarray(mb_actions, dtype=actions_list[0].dtype)
        mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
        mb_values = np.asarray(mb_values, dtype=np.float32)
        # print(f'mb_values.shape is {mb_values.shape}')
        mb_dones = np.asarray(mb_dones, dtype=np.bool)
        mb_masks = mb_dones[:-1]
        mb_dones = mb_dones[1:]

        # print(f'mb_actions is {mb_actions}')
        # print(f'mb_rewards is {mb_rewards}')
        # print(f'mb_values is {mb_values}')
        # print(f'mb_dones is {mb_dones}')
        # print(f'mb_masks is {mb_masks}')
        # print(f'mb_masks.shape is {mb_masks.shape}')

        if gamma > 0.0:
            # Discount/bootstrap off value fn
            last_values = dqn_agent.value(tf.constant(obs_all))
            # print(f'last_values is {last_values}')
            if mb_dones[-1][0] == 0:
                # print('================ hey ================ mb_dones[-1][0] == 0')
                mb_rewards = discount_with_dones(np.concatenate((mb_rewards, [last_values])),
                                                 np.concatenate((mb_dones, [[float(False) for _ in range(num_agents)]]))
                                                 , gamma)[:-1]
            else:
                mb_rewards = discount_with_dones(mb_rewards, mb_dones, gamma)

        # print(f'after discount mb_rewards is {mb_rewards}')

        if replay_buffer is not None:
            replay_buffer.add(mb_obs, mb_actions, mb_rewards, obs1_all, mb_masks[:,0],
                              mb_values, np.tile([exploration.value(t), t], (nsteps, num_agents, 1)))

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones, fps, extra_datas = replay_buffer.sample(batch_size)
                weights, batch_idxes = np.ones_like(rewards), None

            obses_t, obses_tp1 = tf.constant(obses_t), None
            actions, rewards, dones = tf.constant(actions), tf.constant(rewards, dtype=tf.float32), tf.constant(dones)
            weights, fps, extra_datas = tf.constant(weights), tf.constant(fps), tf.constant(extra_datas)

            s = obses_t.shape
            # print(f'obses_t.shape is {s}')
            obses_t = tf.reshape(obses_t, (s[0] * s[1], *s[2:]))
            s = actions.shape
            # print(f'actions.shape is {s}')
            actions = tf.reshape(actions, (s[0] * s[1], *s[2:]))
            s = rewards.shape
            # print(f'rewards.shape is {s}')
            rewards = tf.reshape(rewards, (s[0] * s[1], *s[2:]))
            s = weights.shape
            # print(f'weights.shape is {s}')
            weights = tf.reshape(weights, (s[0] * s[1], *s[2:]))
            s = fps.shape
            # print(f'fps.shape is {s}')
            fps = tf.reshape(fps, (s[0] * s[1], *s[2:]))
            # print(f'fps.shape is {fps.shape}')
            s = extra_datas.shape
            # print(f'extra_datas.shape is {s}')
            extra_datas = tf.reshape(extra_datas, (s[0] * s[1], *s[2:]))
            s = dones.shape
            # print(f'dones.shape is {s}')
            dones = tf.reshape(dones, (s[0], s[1], *s[2:]))
            # print(f'dones.shape is {s}')

            td_errors = dqn_agent.nstep_train(obses_t, actions, rewards, obses_tp1, dones, weights, fps, extra_datas)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            dqn_agent.update_target()

        if t % play_test == 0 and t != 0:
            play_test_games(dqn_agent)

        mean_100ep_reward = np.mean(episode_rewards[-101:-1])
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
            print(f'last 100 episode mean reward {mean_100ep_reward} in {num_episodes} playing')
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
            logger.dump_tabular()
Пример #16
0
def learn(env_id,
          q_func,
          lr=5e-4,
          max_timesteps=10000,
          buffer_size=5000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          train_steps=10,
          learning_starts=500,
          batch_size=32,
          print_freq=10,
          checkpoint_freq=100,
          model_dir=None,
          gamma=1.0,
          target_network_update_freq=50,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          player_processes=None,
          player_connections=None):
    env, _, _ = create_gvgai_environment(env_id)

    # Create all the functions necessary to train the model
    # expert_decision_maker = ExpertDecisionMaker(env=env)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    session = tf.Session()
    session.__enter__()
    policy_path = os.path.join(model_dir, "Policy.pkl")
    model_path = os.path.join(model_dir, "model", "model")
    if os.path.isdir(os.path.join(model_dir, "model")):
        load_state(model_path)
    else:
        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': env.action_space.n,
        }
        act = ActWrapper(act, act_params)
        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()
        act.save(policy_path)
        save_state(model_path)
    env.close()
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_path = os.path.join(model_dir, "Prioritized_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer_path = os.path.join(model_dir, "Normal_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    episode_rewards = list()
    saved_mean_reward = -999999999

    signal.signal(signal.SIGQUIT, signal_handler)
    global terminate_learning

    total_timesteps = 0
    for timestep in range(max_timesteps):
        if terminate_learning:
            break

        for connection in player_connections:
            experiences, reward = connection.recv()
            episode_rewards.append(reward)
            for experience in experiences:
                replay_buffer.add(*experience)
                total_timesteps += 1

        if total_timesteps < learning_starts:
            if timestep % 10 == 0:
                print("not strated yet", flush=True)
            continue

        if timestep % train_freq == 0:
            for i in range(train_steps):
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(total_timesteps))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

        if timestep % target_network_update_freq == 0:
            # Update target network periodically.
            update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if print_freq is not None and timestep % print_freq == 0:
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular(
                "% time spent exploring",
                int(100 * exploration.value(total_timesteps)))
            logger.dump_tabular()

        if timestep % checkpoint_freq == 0 and mean_100ep_reward > saved_mean_reward:
            act.save(policy_path)
            save_state(model_path)
            saved_mean_reward = mean_100ep_reward
            with open(replay_buffer_path, 'wb') as output_file:
                pickle.dump(replay_buffer, output_file,
                            pickle.HIGHEST_PROTOCOL)
            send_message_to_all(player_connections, Message.UPDATE)

    send_message_to_all(player_connections, Message.TERMINATE)
    if mean_100ep_reward > saved_mean_reward:
        act.save(policy_path)
    with open(replay_buffer_path, 'wb') as output_file:
        pickle.dump(replay_buffer, output_file, pickle.HIGHEST_PROTOCOL)
    for player_process in player_processes:
        player_process.join()
        # player_process.terminate()

    return act.load(policy_path)
Пример #17
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Пример #18
0
def learn_continuous_tasks(env,
                           q_func,
                           env_name,
                           dir_path,
                           time_stamp,
                           total_num_episodes,
                           num_actions_pad=33,
                           lr=1e-4,
                           grad_norm_clipping=10,
                           max_timesteps=int(1e8),
                           buffer_size=int(1e6),
                           train_freq=1,
                           batch_size=64,
                           print_freq=10,
                           learning_starts=1000,
                           gamma=0.99,
                           target_network_update_freq=500,
                           prioritized_replay=False,
                           prioritized_replay_alpha=0.6,
                           prioritized_replay_beta0=0.4,
                           prioritized_replay_beta_iters=None,
                           prioritized_replay_eps=int(1e8),
                           num_cpu=16,
                           epsilon_greedy=False,
                           timesteps_std=1e6,
                           initial_std=0.4,
                           final_std=0.05,
                           eval_freq=100,
                           n_eval_episodes=10,
                           eval_std=0.01,
                           log_index=0,
                           log_prefix='q',
                           loss_type="L2",
                           model_file='./',
                           callback=None):
    """Train a branching deepq model to solve continuous control tasks via discretization.
    Current assumptions in the implementation:
    - for solving continuous control domains via discretization (can be adjusted to be compatible with naturally disceret-action domains using 'env.action_space.n')
    - uniform number of sub-actions per action dimension (can be generalized to heterogeneous number of sub-actions across branches)

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions_pad: int
        number of sub-actions per action dimension (= num of discretization grains/bars + 1)
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimize for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
        0.1 for dqn-baselines
    exploration_final_eps: float
        final value of random action probability
        0.02 for dqn-baselines
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    grad_norm_clipping: int
        set None for no clipping
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the unified TD error for updating priorities.
        Erratum: The camera-ready copy of this paper incorrectly reported 1e-8.
        The value used to produece the results is 1e8.
    num_cpu: int
        number of cpus to use for training

    dir_path: str
        path for logs and results to be stored in
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    print('Observation shape:' + str(env.observation_space.shape))

    num_action_grains = num_actions_pad - 1
    num_action_dims = env.action_space.shape[0]
    num_action_streams = num_action_dims
    num_actions = num_actions_pad * num_action_streams  # total numb network outputs for action branching with one action dimension per branch

    print('Number of actions in total:' + str(num_actions))

    act, q_val, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        num_action_streams=num_action_streams,
        batch_size=batch_size,
        optimizer_name="Adam",
        learning_rate=lr,
        grad_norm_clipping=grad_norm_clipping,
        gamma=gamma,
        double_q=True,
        scope="deepq",
        reuse=None,
        loss_type="L2")

    print('TRAIN VARS:')
    print(tf.trainable_variables())

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
        'num_action_streams': num_action_streams,
    }

    print('Create the log writer for TensorBoard visualizations.')
    log_dir = "{}/tensorboard_logs/{}".format(dir_path, env_name)
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    score_placeholder = tf.placeholder(tf.float32, [],
                                       name='score_placeholder')
    tf.summary.scalar('score', score_placeholder)
    lr_constant = tf.constant(lr, name='lr_constant')
    tf.summary.scalar('learning_rate', lr_constant)

    eval_placeholder = tf.placeholder(tf.float32, [], name='eval_placeholder')
    eval_summary = tf.summary.scalar('evaluation', eval_placeholder)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    if epsilon_greedy:
        approximate_num_iters = 2e6 / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 50, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)
    else:
        exploration = ConstantSchedule(value=0.0)  # greedy policy
        std_schedule = LinearSchedule(schedule_timesteps=timesteps_std,
                                      initial_p=initial_std,
                                      final_p=final_std)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    # Initialize the parameters used for converting branching, discrete action indeces to continuous actions
    low = env.action_space.low
    high = env.action_space.high
    actions_range = np.subtract(high, low)
    print('###################################')
    print(low)
    print(high)
    print('###################################')

    episode_rewards = []
    reward_sum = 0.0
    time_steps = [0]
    time_spent_exploring = [0]

    prev_time = time.time()
    n_trainings = 0

    # Open a dircetory for recording results
    results_dir = "{}/results/{}".format(dir_path, env_name)
    if not os.path.exists(results_dir):
        os.makedirs(results_dir)

    displayed_mean_reward = None
    score_timesteps = []

    game_scores = []

    def evaluate(step, episode_number):
        global max_eval_reward_mean, model_saved
        print('Evaluate...')
        eval_reward_sum = 0.0
        # Run evaluation episodes
        for eval_episode in range(n_eval_episodes):
            obs = env.reset()
            done = False
            while not done:
                # Choose action
                action_idxes = np.array(
                    act(np.array(obs)[None],
                        stochastic=False))  # deterministic
                actions_greedy = action_idxes / num_action_grains * actions_range + low

                if eval_std == 0.0:
                    action = actions_greedy
                else:
                    action = []
                    for index in range(len(actions_greedy)):
                        a_greedy = actions_greedy[index]
                        out_of_range_action = True
                        while out_of_range_action:
                            a_stoch = np.random.normal(loc=a_greedy,
                                                       scale=eval_std)
                            a_idx_stoch = np.rint(
                                (a_stoch + high[index]) /
                                actions_range[index] * num_action_grains)
                            if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                                action.append(a_stoch)
                                out_of_range_action = False

                # Step
                obs, rew, done, _ = env.step(action)

                eval_reward_sum += rew

        # Average the rewards and log
        eval_reward_mean = eval_reward_sum / n_eval_episodes
        print(eval_reward_mean, 'over', n_eval_episodes, 'episodes')
        game_scores.append(eval_reward_mean)
        score_timesteps.append(step)

        if max_eval_reward_mean is None or eval_reward_mean > max_eval_reward_mean:
            logger.log(
                "Saving model due to mean eval increase: {} -> {}".format(
                    max_eval_reward_mean, eval_reward_mean))
            U.save_state(model_file)
            model_saved = True
            max_eval_reward_mean = eval_reward_mean
            intact = ActWrapper(act, act_params)

            intact.save(model_file + "_" + str(episode_number) + "_" +
                        str(int(np.round(max_eval_reward_mean))))
            print('Act saved to ' + model_file + "_" + str(episode_number) +
                  "_" + str(int(np.round(max_eval_reward_mean))))

    with tempfile.TemporaryDirectory() as td:
        td = './logs'
        evaluate(0, 0)
        obs = env.reset()

        t = -1
        all_means = []
        q_stats = []
        current_qs = []

        training_game_scores = []
        training_timesteps = []
        while True:
            t += 1
            # Select action and update exploration probability
            action_idxes = np.array(
                act(np.array(obs)[None], update_eps=exploration.value(t)))
            qs = np.array(q_val(np.array(obs)[None],
                                stochastic=False))  # deterministic
            tt = []
            for val in qs:
                tt.append(np.std(val))
            current_qs.append(tt)

            # Convert sub-actions indexes (discrete sub-actions) to continuous controls
            action = action_idxes / num_action_grains * actions_range + low
            if not epsilon_greedy:  # Gaussian noise
                actions_greedy = action
                action_idx_stoch = []
                action = []
                for index in range(len(actions_greedy)):
                    a_greedy = actions_greedy[index]
                    out_of_range_action = True
                    while out_of_range_action:
                        # Sample from a Gaussian with mean at the greedy action and a std following a schedule of choice
                        a_stoch = np.random.normal(loc=a_greedy,
                                                   scale=std_schedule.value(t))
                        # Convert sampled cont action to an action idx
                        a_idx_stoch = np.rint(
                            (a_stoch + high[index]) / actions_range[index] *
                            num_action_grains)
                        # Check if action is in range
                        if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                            action_idx_stoch.append(a_idx_stoch)
                            action.append(a_stoch)
                            out_of_range_action = False
                action_idxes = action_idx_stoch
            new_obs, rew, done, _ = env.step(np.array(action))
            # Store transition in the replay buffer
            replay_buffer.add(obs, action_idxes, rew, new_obs, float(done))
            obs = new_obs
            reward_sum += rew
            if done:
                obs = env.reset()
                time_spent_exploring[-1] = int(100 * exploration.value(t))
                time_spent_exploring.append(0)
                episode_rewards.append(reward_sum)
                training_game_scores.append(reward_sum)
                training_timesteps.append(t)
                time_steps[-1] = t
                reward_sum = 0.0
                time_steps.append(0)
                q_stats.append(np.mean(current_qs, 0))
                current_qs = []

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(
                    obses_t, actions, rewards, obses_tp1, dones,
                    weights)  # np.ones_like(rewards)) #TEMP AT NEW
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)
                n_trainings += 1
            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically
                update_target()
            if len(episode_rewards) == 0:
                mean_100ep_reward = 0
            elif len(episode_rewards) < 100:
                mean_100ep_reward = np.mean(episode_rewards)
            else:
                mean_100ep_reward = np.mean(episode_rewards[-100:])
            all_means.append(mean_100ep_reward)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                current_time = time.time()
                logger.record_tabular("trainings per second",
                                      n_trainings / (current_time - prev_time))
                logger.dump_tabular()
                n_trainings = 0
                prev_time = current_time
            if t > learning_starts and num_episodes > 100:
                if displayed_mean_reward is None or mean_100ep_reward > displayed_mean_reward:
                    if print_freq is not None:
                        logger.log("Mean reward increase: {} -> {}".format(
                            displayed_mean_reward, mean_100ep_reward))
                    displayed_mean_reward = mean_100ep_reward
                    # Performance evaluation with a greedy policy
            if done and num_episodes % eval_freq == 0:
                evaluate(t + 1, num_episodes)
                obs = env.reset()
            # STOP training
            if num_episodes >= total_num_episodes:
                break
        pickle.dump(q_stats,
                    open(
                        str(log_index) + "q_stat_stds99_" + log_prefix +
                        ".pkl", 'wb'),
                    protocol=pickle.HIGHEST_PROTOCOL)

        pickle.dump(game_scores,
                    open(
                        str(log_index) + "q_stat_scores99_" + log_prefix +
                        ".pkl", 'wb'),
                    protocol=pickle.HIGHEST_PROTOCOL)

    return ActWrapper(act, act_params)
def learn_continuous_tasks(env,
                           q_func,
                           env_name,
                           time_stamp,
                           total_num_episodes,
                           num_actions_pad=33,
                           lr=1e-4,
                           grad_norm_clipping=10,
                           max_timesteps=int(1e8),
                           buffer_size=int(1e6),
                           train_freq=1,
                           batch_size=64,
                           print_freq=10,
                           learning_starts=1000,
                           gamma=0.99,
                           target_network_update_freq=500,
                           prioritized_replay_alpha=0.6,
                           prioritized_replay_beta0=0.4,
                           prioritized_replay_beta_iters=2e6,
                           prioritized_replay_eps=int(1e8),
                           num_cpu=16,
                           timesteps_std=1e6,
                           initial_std=0.4,
                           final_std=0.05,
                           eval_freq=100,
                           n_eval_episodes=10,
                           eval_std=0.01,
                           callback=None):
    """Train a branching deepq model to solve continuous control tasks via discretization.
    Current assumptions in the implementation: 
    - for solving continuous control domains via discretization (can be adjusted to be compatible with naturally disceret-action domains using 'env.action_space.n')
    - uniform number of sub-actions per action dimension (can be generalized to heterogeneous number of sub-actions across branches) 

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions_pad: int
        number of sub-actions per action dimension (= num of discretization grains/bars + 1)
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimize for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
        0.1 for dqn-baselines
    exploration_final_eps: float
        final value of random action probability
        0.02 for dqn-baselines 
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    grad_norm_clipping: int
        set None for no clipping
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the unified TD error for updating priorities.
        Erratum: The camera-ready copy of this paper incorrectly reported 1e-8. 
        The value used to produece the results is 1e8.
    num_cpu: int
        number of cpus to use for training
    losses_version: int
        optimization version number
    dir_path: str 
        path for logs and results to be stored in 
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    num_action_grains = num_actions_pad - 1
    num_action_dims = env.action_space.shape[0]
    num_action_streams = num_action_dims
    num_actions = num_actions_pad * num_action_streams  # total numb network outputs for action branching with one action dimension per branch

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        num_action_streams=num_action_streams,
        batch_size=batch_size,
        learning_rate=lr,
        grad_norm_clipping=grad_norm_clipping,
        gamma=gamma,
        scope="deepq",
        reuse=None)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
        'num_action_streams': num_action_streams,
    }

    # prioritized_replay: create the replay buffer
    replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                            alpha=prioritized_replay_alpha)
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)

    # epsilon_greedy = False: just greedy policy
    exploration = ConstantSchedule(value=0.0)  # greedy policy
    std_schedule = LinearSchedule(schedule_timesteps=timesteps_std,
                                  initial_p=initial_std,
                                  final_p=final_std)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    # Initialize the parameters used for converting branching, discrete action indeces to continuous actions
    low = env.action_space.low
    high = env.action_space.high
    actions_range = np.subtract(high, low)

    episode_rewards = []
    reward_sum = 0.0
    num_episodes = 0
    time_steps = [0]
    time_spent_exploring = [0]

    prev_time = time.time()
    n_trainings = 0

    # Set up on-demand rendering of Gym environments using keyboard controls: 'r'ender or 's'top
    import termios, fcntl, sys
    fd = sys.stdin.fileno()
    oldterm = termios.tcgetattr(fd)
    newattr = termios.tcgetattr(fd)
    newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
    render = False

    displayed_mean_reward = None

    def evaluate(step, episode_number):
        global max_eval_reward_mean, model_saved
        print('Evaluate...')
        eval_reward_sum = 0.0
        # Run evaluation episodes
        for eval_episode in range(n_eval_episodes):
            obs = env.reset()
            done = False
            while not done:
                # Choose action
                action_idxes = np.array(
                    act(np.array(obs)[None],
                        stochastic=False))  # deterministic
                actions_greedy = action_idxes / num_action_grains * actions_range + low

                if eval_std == 0.0:
                    action = actions_greedy
                else:
                    action = []
                    for index in range(len(actions_greedy)):
                        a_greedy = actions_greedy[index]
                        out_of_range_action = True
                        while out_of_range_action:
                            a_stoch = np.random.normal(loc=a_greedy,
                                                       scale=eval_std)
                            a_idx_stoch = np.rint(
                                (a_stoch + high[index]) /
                                actions_range[index] * num_action_grains)
                            if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                                action.append(a_stoch)
                                out_of_range_action = False

                # Step
                obs, rew, done, _ = env.step(action)
                eval_reward_sum += rew

        # Average the rewards and log
        eval_reward_mean = eval_reward_sum / n_eval_episodes
        print(eval_reward_mean, 'over', n_eval_episodes, 'episodes')

        with open("results/{}_{}_eval.csv".format(time_stamp, env_name),
                  "a") as eval_fw:
            eval_writer = csv.writer(
                eval_fw,
                delimiter="\t",
                lineterminator="\n",
            )
            eval_writer.writerow([episode_number, step, eval_reward_mean])

        if max_eval_reward_mean is None or eval_reward_mean > max_eval_reward_mean:
            logger.log(
                "Saving model due to mean eval increase: {} -> {}".format(
                    max_eval_reward_mean, eval_reward_mean))
            U.save_state(model_file)
            model_saved = True
            max_eval_reward_mean = eval_reward_mean

    with tempfile.TemporaryDirectory() as td:
        model_file = os.path.join(td, "model")

        evaluate(0, 0)
        obs = env.reset()

        with open("results/{}_{}.csv".format(time_stamp, env_name), "w") as fw:
            writer = csv.writer(
                fw,
                delimiter="\t",
                lineterminator="\n",
            )

            t = -1
            while True:
                t += 1

                # Select action and update exploration probability
                action_idxes = np.array(
                    act(np.array(obs)[None], update_eps=exploration.value(t)))

                # Convert sub-actions indexes (discrete sub-actions) to continuous controls
                action = action_idxes / num_action_grains * actions_range + low

                # epsilon_greedy = False: use Gaussian noise
                actions_greedy = action
                action_idx_stoch = []
                action = []
                for index in range(len(actions_greedy)):
                    a_greedy = actions_greedy[index]
                    out_of_range_action = True
                    while out_of_range_action:
                        # Sample from a Gaussian with mean at the greedy action and a std following a schedule of choice
                        a_stoch = np.random.normal(loc=a_greedy,
                                                   scale=std_schedule.value(t))

                        # Convert sampled cont action to an action idx
                        a_idx_stoch = np.rint(
                            (a_stoch + high[index]) / actions_range[index] *
                            num_action_grains)

                        # Check if action is in range
                        if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                            action_idx_stoch.append(a_idx_stoch)
                            action.append(a_stoch)
                            out_of_range_action = False

                action_idxes = action_idx_stoch

                new_obs, rew, done, _ = env.step(action)

                # On-demand rendering
                if (t + 1) % 100 == 0:
                    # TO DO better?
                    termios.tcsetattr(fd, termios.TCSANOW, newattr)
                    oldflags = fcntl.fcntl(fd, fcntl.F_GETFL)
                    fcntl.fcntl(fd, fcntl.F_SETFL, oldflags | os.O_NONBLOCK)
                    try:
                        try:
                            c = sys.stdin.read(1)
                            if c == 'r':
                                print()
                                print('Rendering begins...')
                                render = True
                            elif c == 's':
                                print()
                                print('Stop rendering!')
                                render = False
                                env.render(close=True)
                        except IOError:
                            pass
                    finally:
                        termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm)
                        fcntl.fcntl(fd, fcntl.F_SETFL, oldflags)

                # Visualize Gym environment on render
                if render: env.render()

                # Store transition in the replay buffer
                replay_buffer.add(obs, action_idxes, rew, new_obs, float(done))
                obs = new_obs

                reward_sum += rew
                if done:
                    obs = env.reset()
                    time_spent_exploring[-1] = int(100 * exploration.value(t))
                    time_spent_exploring.append(0)
                    episode_rewards.append(reward_sum)
                    time_steps[-1] = t
                    reward_sum = 0.0
                    time_steps.append(0)
                    # Frequently log to file
                    writer.writerow(
                        [len(episode_rewards), t, episode_rewards[-1]])

                if t > learning_starts and t % train_freq == 0:
                    # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                    # prioritized_replay
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience

                    td_errors = train(
                        obses_t, actions, rewards, obses_tp1, dones,
                        weights)  #np.ones_like(rewards)) #TEMP AT NEW

                    # prioritized_replay
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

                    n_trainings += 1

                if t > learning_starts and t % target_network_update_freq == 0:
                    # Update target network periodically
                    update_target()

                if len(episode_rewards) == 0: mean_100ep_reward = 0
                elif len(episode_rewards) < 100:
                    mean_100ep_reward = np.mean(episode_rewards)
                else:
                    mean_100ep_reward = np.mean(episode_rewards[-100:])

                num_episodes = len(episode_rewards)
                if done and print_freq is not None and len(
                        episode_rewards) % print_freq == 0:
                    logger.record_tabular("steps", t)
                    logger.record_tabular("episodes", num_episodes)
                    logger.record_tabular("mean 100 episode reward",
                                          mean_100ep_reward)
                    logger.record_tabular("% time spent exploring",
                                          int(100 * exploration.value(t)))
                    current_time = time.time()
                    logger.record_tabular(
                        "trainings per second",
                        n_trainings / (current_time - prev_time))
                    logger.dump_tabular()
                    n_trainings = 0
                    prev_time = current_time

                if t > learning_starts and num_episodes > 100:
                    if displayed_mean_reward is None or mean_100ep_reward > displayed_mean_reward:
                        if print_freq is not None:
                            logger.log("Mean reward increase: {} -> {}".format(
                                displayed_mean_reward, mean_100ep_reward))
                        displayed_mean_reward = mean_100ep_reward

                # Performance evaluation with a greedy policy
                if done and num_episodes % eval_freq == 0:
                    evaluate(t + 1, num_episodes)
                    obs = env.reset()

                # STOP training
                if num_episodes >= total_num_episodes:
                    break

            if model_saved:
                logger.log("Restore model with mean eval: {}".format(
                    max_eval_reward_mean))
                U.load_state(model_file)

    data_to_log = {
        'time_steps': time_steps,
        'episode_rewards': episode_rewards,
        'time_spent_exploring': time_spent_exploring
    }

    # Write to file the episodic rewards, number of steps, and the time spent exploring
    with open("results/{}_{}.txt".format(time_stamp, env_name), 'wb') as fp:
        pickle.dump(data_to_log, fp)

    return ActWrapper(act, act_params)
Пример #20
0
    def __init__(self,
                 states_n: tuple,
                 actions_n: int,
                 hidden_layers: list,
                 scope_name: str,
                 sess=None,
                 learning_rate=1e-4,
                 discount=0.98,
                 replay_memory_size=100000,
                 batch_size=32,
                 begin_train=1000,
                 targetnet_update_freq=1000,
                 epsilon_start=1.0,
                 epsilon_end=0.1,
                 epsilon_decay_step=50000,
                 seed=1,
                 logdir='logs',
                 savedir='save',
                 save_freq=10000,
                 use_tau=False,
                 tau=0.001):
        """

        :param states_n: tuple
        :param actions_n: int
        :param hidden_layers: list
        :param scope_name: str
        :param sess: tf.Session
        :param learning_rate: float
        :param discount: float
        :param replay_memory_size: int
        :param batch_size: int
        :param begin_train: int
        :param targetnet_update_freq: int
        :param epsilon_start: float
        :param epsilon_end: float
        :param epsilon_decay_step: int
        :param seed: int
        :param logdir: str
        """
        self.states_n = states_n
        self.actions_n = actions_n
        self._hidden_layers = hidden_layers
        self._scope_name = scope_name
        self.lr = learning_rate
        self._target_net_update_freq = targetnet_update_freq
        self._current_time_step = 0
        self._epsilon_schedule = LinearSchedule(epsilon_decay_step,
                                                epsilon_end, epsilon_start)
        self._train_batch_size = batch_size
        self._begin_train = begin_train
        self._gamma = discount

        self._use_tau = use_tau
        self._tau = tau

        self.savedir = savedir
        self.save_freq = save_freq

        self.qnet_optimizer = tf.train.AdamOptimizer(self.lr)

        self._replay_buffer = ReplayBuffer(replay_memory_size)

        self._seed(seed)

        with tf.Graph().as_default():
            self._build_graph()
            self._merged_summary = tf.summary.merge_all()

            if sess is None:
                self.sess = tf.Session()
            else:
                self.sess = sess
            self.sess.run(tf.global_variables_initializer())

            self._saver = tf.train.Saver()

            self._summary_writer = tf.summary.FileWriter(logdir=logdir)
            self._summary_writer.add_graph(tf.get_default_graph())
Пример #21
0
def main(env_name='KungFuMasterNoFrameskip-v0',
         train_freq=4,
         target_update_freq=10000,
         checkpoint_freq=100000,
         log_freq=1,
         batch_size=32,
         train_after=200000,
         max_timesteps=5000000,
         buffer_size=50000,
         vmin=-10,
         vmax=10,
         n=51,
         gamma=0.99,
         final_eps=0.1,
         final_eps_update=1000000,
         learning_rate=0.00025,
         momentum=0.95):
    env = gym.make(env_name)
    env = wrap_env(env)

    state_dim = (4, 84, 84)
    action_count = env.action_space.n

    with C.default_options(activation=C.relu, init=C.he_uniform()):
        model_func = Sequential([
            Convolution2D((8, 8), 32, strides=4, name='conv1'),
            Convolution2D((4, 4), 64, strides=2, name='conv2'),
            Convolution2D((3, 3), 64, strides=1, name='conv3'),
            Dense(512, name='dense1'),
            Dense((action_count, n), activation=None, name='out')
        ])

    agent = CategoricalAgent(state_dim, action_count, model_func, vmin, vmax, n, gamma,
                             lr=learning_rate, mm=momentum, use_tensorboard=True)
    logger = agent.writer

    epsilon_schedule = LinearSchedule(1.0, final_eps, final_eps_update)
    replay_buffer = ReplayBuffer(buffer_size)

    try:
        obs = env.reset()
        episode = 0
        rewards = 0
        steps = 0

        for t in range(max_timesteps):
            # Take action
            if t > train_after:
                action = agent.act(obs, epsilon=epsilon_schedule.value(t))
            else:
                action = np.random.choice(action_count)
            obs_, reward, done, _ = env.step(action)

            # Store transition in replay buffer
            replay_buffer.add(obs, action, reward, obs_, float(done))

            obs = obs_
            rewards += reward

            if t > train_after and (t % train_freq) == 0:
                # Minimize error in projected Bellman update on a batch sampled from replay buffer
                experience = replay_buffer.sample(batch_size)
                agent.train(*experience)  # experience is (s, a, r, s_, t) tuple
                logger.write_value('loss', agent.trainer.previous_minibatch_loss_average, t)

            if t > train_after and (t % target_update_freq) == 0:
                agent.update_target()

            if t > train_after and (t % checkpoint_freq) == 0:
                agent.checkpoint('checkpoints/model_{}.chkpt'.format(t))

            if done:
                episode += 1
                obs = env.reset()

                if episode % log_freq == 0:
                    steps = t - steps + 1

                    logger.write_value('rewards', rewards, episode)
                    logger.write_value('steps', steps, episode)
                    logger.write_value('epsilon', epsilon_schedule.value(t), episode)
                    logger.flush()

                rewards = 0
                steps = t

    finally:
        agent.save_model('checkpoints/{}.cdqn'.format(env_name))
Пример #22
0
def learn(env,
          network,
          seed=None,
          lr=5e-5,
          total_timesteps=100000,
          buffer_size=500000,
          exploration_fraction=0.1,
          exploration_final_eps=0.01,
          train_freq=1,
          batch_size=32,
          print_freq=10,
          checkpoint_freq=100000,
          checkpoint_path=None,
          learning_starts=0,
          gamma=0.99,
          target_network_update_freq=10000,
          prioritized_replay=True,
          prioritized_replay_alpha=0.4,
          prioritized_replay_beta0=0.6,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-3,
          param_noise=False,
          callback=None,
          load_path=None,
          load_idx=None,
          demo_path=None,
          n_step=10,
          demo_prioritized_replay_eps=1.0,
          pre_train_timesteps=750000,
          epsilon_schedule="constant",
          **network_kwargs):
    # Create all the functions necessary to train the model
    set_global_seeds(seed)
    q_func = build_q_func(network, **network_kwargs)

    with tf.device('/GPU:0'):
        model = DQfD(q_func=q_func,
                     observation_shape=env.observation_space.shape,
                     num_actions=env.action_space.n,
                     lr=lr,
                     grad_norm_clipping=10,
                     gamma=gamma,
                     param_noise=param_noise)

    # Load model from checkpoint
    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=model)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        if load_idx is None:
            ckpt.restore(manager.latest_checkpoint)
            print("Restoring from {}".format(manager.latest_checkpoint))
        else:
            ckpt.restore(manager.checkpoints[load_idx])
            print("Restoring from {}".format(manager.checkpoints[load_idx]))

    # Setup demo trajectory
    assert demo_path is not None
    with open(demo_path, "rb") as f:
        trajectories = pickle.load(f)

    # Create the replay buffer
    replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                            prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
        prioritized_replay_beta_iters = total_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
    temp_buffer = deque(maxlen=n_step)
    is_demo = True
    for epi in trajectories:
        for obs, action, rew, new_obs, done in epi:
            obs, new_obs = np.expand_dims(
                np.array(obs), axis=0), np.expand_dims(np.array(new_obs),
                                                       axis=0)
            if n_step:
                temp_buffer.append((obs, action, rew, new_obs, done, is_demo))
                if len(temp_buffer) == n_step:
                    n_step_sample = get_n_step_sample(temp_buffer, gamma)
                    replay_buffer.demo_len += 1
                    replay_buffer.add(*n_step_sample)
            else:
                replay_buffer.demo_len += 1
                replay_buffer.add(obs[0], action, rew, new_obs[0], float(done),
                                  float(is_demo))
    logger.log("trajectory length:", replay_buffer.demo_len)
    # Create the schedule for exploration
    if epsilon_schedule == "constant":
        exploration = ConstantSchedule(exploration_final_eps)
    else:  # not used
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * total_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)

    model.update_target()

    # ============================================== pre-training ======================================================
    start = time()
    num_episodes = 0
    temp_buffer = deque(maxlen=n_step)
    for t in tqdm(range(pre_train_timesteps)):
        # sample and train
        experience = replay_buffer.sample(batch_size,
                                          beta=prioritized_replay_beta0)
        batch_idxes = experience[-1]
        if experience[6] is None:  # for n_step = 0
            obses_t, actions, rewards, obses_tp1, dones, is_demos = tuple(
                map(tf.constant, experience[:6]))
            obses_tpn, rewards_n, dones_n = None, None, None
            weights = tf.constant(experience[-2])
        else:
            obses_t, actions, rewards, obses_tp1, dones, is_demos, obses_tpn, rewards_n, dones_n, weights = tuple(
                map(tf.constant, experience[:-1]))
        td_errors, n_td_errors, loss_dq, loss_n, loss_E, loss_l2, weighted_error = model.train(
            obses_t, actions, rewards, obses_tp1, dones, is_demos, weights,
            obses_tpn, rewards_n, dones_n)

        # Update priorities
        new_priorities = np.abs(td_errors) + np.abs(
            n_td_errors) + demo_prioritized_replay_eps
        replay_buffer.update_priorities(batch_idxes, new_priorities)

        # Update target network periodically
        if t > 0 and t % target_network_update_freq == 0:
            model.update_target()

        # Logging
        elapsed_time = timedelta(time() - start)
        if print_freq is not None and t % 10000 == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", 0)
            logger.record_tabular("max 100 episode reward", 0)
            logger.record_tabular("min 100 episode reward", 0)
            logger.record_tabular("demo sample rate", 1)
            logger.record_tabular("epsilon", 0)
            logger.record_tabular("loss_td", np.mean(loss_dq.numpy()))
            logger.record_tabular("loss_n_td", np.mean(loss_n.numpy()))
            logger.record_tabular("loss_margin", np.mean(loss_E.numpy()))
            logger.record_tabular("loss_l2", np.mean(loss_l2.numpy()))
            logger.record_tabular("losses_all", weighted_error.numpy())
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.record_tabular("pre_train", True)
            logger.record_tabular("elapsed time", elapsed_time)
            logger.dump_tabular()

    # ============================================== exploring =========================================================
    sample_counts = 0
    demo_used_counts = 0
    episode_rewards = deque(maxlen=100)
    this_episode_reward = 0.
    best_score = 0.
    saved_mean_reward = None
    is_demo = False
    obs = env.reset()
    # Always mimic the vectorized env
    obs = np.expand_dims(np.array(obs), axis=0)
    reset = True
    for t in tqdm(range(total_timesteps)):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:  # not used
            update_eps = tf.constant(0.)
            update_param_noise_threshold = -np.log(1. - exploration.value(t) +
                                                   exploration.value(t) /
                                                   float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs[
                'update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True
        action, epsilon, _, _ = model.step(tf.constant(obs),
                                           update_eps=update_eps,
                                           **kwargs)
        action = action[0].numpy()
        reset = False
        new_obs, rew, done, _ = env.step(action)

        # Store transition in the replay buffer.
        new_obs = np.expand_dims(np.array(new_obs), axis=0)
        if n_step:
            temp_buffer.append((obs, action, rew, new_obs, done, is_demo))
            if len(temp_buffer) == n_step:
                n_step_sample = get_n_step_sample(temp_buffer, gamma)
                replay_buffer.add(*n_step_sample)
        else:
            replay_buffer.add(obs[0], action, rew, new_obs[0], float(done), 0.)
        obs = new_obs

        # invert log scaled score for logging
        this_episode_reward += np.sign(rew) * (np.exp(np.sign(rew) * rew) - 1.)
        if done:
            num_episodes += 1
            obs = env.reset()
            obs = np.expand_dims(np.array(obs), axis=0)
            episode_rewards.append(this_episode_reward)
            reset = True
            if this_episode_reward > best_score:
                best_score = this_episode_reward
                ckpt = tf.train.Checkpoint(model=model)
                manager = tf.train.CheckpointManager(ckpt,
                                                     './best_model',
                                                     max_to_keep=1)
                manager.save(t)
                logger.log("saved best model")
            this_episode_reward = 0.0

        if t % train_freq == 0:
            experience = replay_buffer.sample(batch_size,
                                              beta=beta_schedule.value(t))
            batch_idxes = experience[-1]
            if experience[6] is None:  # for n_step = 0
                obses_t, actions, rewards, obses_tp1, dones, is_demos = tuple(
                    map(tf.constant, experience[:6]))
                obses_tpn, rewards_n, dones_n = None, None, None
                weights = tf.constant(experience[-2])
            else:
                obses_t, actions, rewards, obses_tp1, dones, is_demos, obses_tpn, rewards_n, dones_n, weights = tuple(
                    map(tf.constant, experience[:-1]))
            td_errors, n_td_errors, loss_dq, loss_n, loss_E, loss_l2, weighted_error = model.train(
                obses_t, actions, rewards, obses_tp1, dones, is_demos, weights,
                obses_tpn, rewards_n, dones_n)
            new_priorities = np.abs(td_errors) + np.abs(
                n_td_errors
            ) + demo_prioritized_replay_eps * is_demos + prioritized_replay_eps * (
                1. - is_demos)
            replay_buffer.update_priorities(batch_idxes, new_priorities)

            # for logging
            sample_counts += batch_size
            demo_used_counts += np.sum(is_demos)

        if t % target_network_update_freq == 0:
            # Update target network periodically.
            model.update_target()

        if t % checkpoint_freq == 0:
            save_path = checkpoint_path
            ckpt = tf.train.Checkpoint(model=model)
            manager = tf.train.CheckpointManager(ckpt,
                                                 save_path,
                                                 max_to_keep=10)
            manager.save(t)
            logger.log("saved checkpoint")

        elapsed_time = timedelta(time() - start)
        if done and num_episodes > 0 and num_episodes % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward",
                                  np.mean(episode_rewards))
            logger.record_tabular("max 100 episode reward",
                                  np.max(episode_rewards))
            logger.record_tabular("min 100 episode reward",
                                  np.min(episode_rewards))
            logger.record_tabular("demo sample rate",
                                  demo_used_counts / sample_counts)
            logger.record_tabular("epsilon", epsilon.numpy())
            logger.record_tabular("loss_td", np.mean(loss_dq.numpy()))
            logger.record_tabular("loss_n_td", np.mean(loss_n.numpy()))
            logger.record_tabular("loss_margin", np.mean(loss_E.numpy()))
            logger.record_tabular("loss_l2", np.mean(loss_l2.numpy()))
            logger.record_tabular("losses_all", weighted_error.numpy())
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.record_tabular("pre_train", False)
            logger.record_tabular("elapsed time", elapsed_time)
            logger.dump_tabular()

    return model
Пример #23
0
def main():
    with open('cartpole.json', encoding='utf-8') as config_file:
        config = json.load(config_file)

    env = gym.make('CartPole-v0')
    state_shape = env.observation_space.shape
    action_count = env.action_space.n

    layers = []
    for layer in config['layers']:
        layers.append(Dense(layer, activation=C.relu))

    layers.append(Dense((action_count, config['n']), activation=None))
    model_func = Sequential(layers)

    replay_buffer = ReplayBuffer(config['buffer_capacity'])

    # Fill the buffer with randomly generated samples
    state = env.reset()
    for i in range(config['buffer_capacity']):
        action = env.action_space.sample()
        post_state, reward, done, _ = env.step(action)
        replay_buffer.add(state.astype(np.float32), action, reward, post_state.astype(np.float32), float(done))

        if done:
            state = env.reset()

    reward_buffer = np.zeros(config['max_episodes'], dtype=np.float32)
    losses = []

    epsilon_schedule = LinearSchedule(1, 0.01, config['max_episodes'])
    agent = CategoricalAgent(state_shape, action_count, model_func, config['vmin'], config['vmax'], config['n'],
                             lr=config['lr'], gamma=config['gamma'])

    log_freq = config['log_freq']
    for episode in range(1, config['max_episodes'] + 1):
        state = env.reset().astype(np.float32)
        done = False

        while not done:
            action = agent.act(state, epsilon_schedule.value(episode))
            post_state, reward, done, _ = env.step(action)

            post_state = post_state.astype(np.float32)
            replay_buffer.add(state, action, reward, post_state, float(done))
            reward_buffer[episode - 1] += reward

            state = post_state

        minibatch = replay_buffer.sample(config['minibatch_size'])
        agent.train(*minibatch)
        loss = agent.trainer.previous_minibatch_loss_average
        losses.append(loss)

        if episode % config['target_update_freq'] == 0:
            agent.update_target()

        if episode % log_freq == 0:
            average = np.sum(reward_buffer[episode - log_freq: episode]) / log_freq
            print('Episode {:4d} | Loss: {:6.4f} | Reward: {}'.format(episode, loss, average))

    agent.model.save('cartpole.cdqn')

    sns.set_style('dark')
    pd.Series(reward_buffer).rolling(window=log_freq).mean().plot()
    plt.xlabel('Episode')
    plt.ylabel('Reward')
    plt.title('CartPole - Reward with Time')
    plt.show()

    plt.plot(np.arange(len(losses)), losses)
    plt.xlabel('Episode')
    plt.ylabel('Loss')
    plt.title('CartPole - Loss with Time')
    plt.show()
Пример #24
0
def main(env_name,
         train_freq=1,
         target_update_freq=1000,
         batch_size=32,
         train_after=64,
         final_gamma=0.02,
         max_timesteps=2000000,
         buffer_size=10000,
         prioritized_replay_alpha=0.6,
         prioritized_replay_beta=0.4,
         prioritized_replay_eps=1e-6,
         log_freq=1,
         checkpoint_freq=10000):
    env = gym.make(env_name)
    env = wrap_env(env)

    state_dim = (4, 84, 84)
    action_dim = env.action_space.n

    agent = LearningAgent(state_dim, action_dim)
    logger = agent.writer

    eps_sched = LinearSchedule(1.0, final_gamma, max_timesteps)
    beta_sched = LinearSchedule(prioritized_replay_beta, 1.0, max_timesteps)
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)

    try:
        obs = env.reset()
        episode = 0
        rewards = 0
        steps = 0
        for t in range(max_timesteps):
            # Take action and update exploration to newest value
            action = agent.act(obs, epsilon=eps_sched.value(t))
            obs_, reward, done, _ = env.step(action)

            # Store transition in replay buffer
            replay_buffer.add(obs, action, reward, obs_, float(done))
            obs = obs_

            rewards += reward
            if done:
                steps = t - steps
                episode += 1
                obs = env.reset()

            if t > train_after and (t % train_freq) == 0:
                print('Training...')
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                experience = replay_buffer.sample(batch_size, beta=beta_sched.value(t))
                (s, a, r, s_, t, weights, batch_idxes) = experience

                td_errors = agent.train(s, a, r, s_, t, weights)
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > train_after and (t % target_update_freq) == 0:
                agent.update_target()

            if done and (episode % log_freq) == 0:
                logger.write_value('rewards', rewards, episode)
                logger.write_value('steps', steps, episode)
                logger.write_value('epsilon', eps_sched.value(t), episode)
                agent.trainer.summarize_training_progress()
                logger.flush()

                rewards = 0
                steps = t

            if t > train_after and (t % checkpoint_freq) == 0:
                agent.checkpoint('model_{}.chkpt'.format(t))
    finally:
        agent.save_model('model.dnn')
Пример #25
0
def learn_att(env,
          q_func,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):

    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    # q_func = build_q_func(network, **network_kwargs) since no network setting

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train_att(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        #add a mask function for the choice of actions
        mask_func=
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))


        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_variables(model_file)

    return act
Пример #26
0
def learn(env,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16):
    torch.set_num_threads(num_cpu)
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(
            prioritized_replay_beta_iters,
            initial_p=prioritized_replay_beta0,
            final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    exploration = LinearSchedule(
        schedule_timesteps=int(exploration_fraction * max_timesteps),
        initial_p=1.0,
        final_p=exploration_final_eps)
    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

    screen = player_relative

    obs, xy_per_marine = common.init(env, obs)

    group_id = 0
    reset = True
    dqn = DQN(num_actions, lr, cuda)

    print('\nCollecting experience...')
    checkpoint_path = 'models/deepq/checkpoint.pth.tar'
    if os.path.exists(checkpoint_path):
        dqn, saved_mean_reward = load_checkpoint(dqn, cuda, filename=checkpoint_path)
    for t in range(max_timesteps):
        # Take action and update exploration to the newest value
        # custom process for DefeatZerglingsAndBanelings
        obs, screen, player = common.select_marine(env, obs)
        # action = act(
        #     np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
        action = dqn.choose_action(np.array(screen)[None])
        reset = False
        rew = 0
        new_action = None
        obs, new_action = common.marine_action(env, obs, player, action)
        army_count = env._obs[0].observation.player_common.army_count
        try:
            if army_count > 0 and _ATTACK_SCREEN in obs[0].observation["available_actions"]:
                obs = env.step(actions=new_action)
            else:
                new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
                obs = env.step(actions=new_action)
        except Exception as e:
            # print(e)
            1  # Do nothing
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
        new_screen = player_relative
        rew += obs[0].reward
        done = obs[0].step_type == environment.StepType.LAST
        selected = obs[0].observation["screen"][_SELECTED]
        player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()
        if len(player_y) > 0:
            player = [int(player_x.mean()), int(player_y.mean())]
        if len(player) == 2:
            if player[0] > 32:
                new_screen = common.shift(LEFT, player[0] - 32, new_screen)
            elif player[0] < 32:
                new_screen = common.shift(RIGHT, 32 - player[0],
                                          new_screen)
            if player[1] > 32:
                new_screen = common.shift(UP, player[1] - 32, new_screen)
            elif player[1] < 32:
                new_screen = common.shift(DOWN, 32 - player[1], new_screen)
        # Store transition in the replay buffer.
        replay_buffer.add(screen, action, rew, new_screen, float(done))
        screen = new_screen
        episode_rewards[-1] += rew
        reward = episode_rewards[-1]
        if done:
            print("Episode Reward : %s" % episode_rewards[-1])
            obs = env.reset()
            player_relative = obs[0].observation["screen"][
                _PLAYER_RELATIVE]
            screen = player_relative
            group_list = common.init(env, obs)
            # Select all marines first
            # env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
            episode_rewards.append(0.0)
            reset = True

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(
                    batch_size, beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights,
                 batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                    batch_size)
                weights, batch_idxes = np.ones_like(rewards), None

            td_errors = dqn.learn(obses_t, actions, rewards, obses_tp1, gamma, batch_size)

            if prioritized_replay:
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes,
                                                new_priorities)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            dqn.update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(
                episode_rewards) % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("reward", reward)
            logger.record_tabular("mean 100 episode reward",
                                  mean_100ep_reward)
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.dump_tabular()

        if (checkpoint_freq is not None and t > learning_starts
                and num_episodes > 100 and t % checkpoint_freq == 0):
            if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                if print_freq is not None:
                    logger.log(
                        "Saving model due to mean reward increase: {} -> {}".format(
                            saved_mean_reward,
                            mean_100ep_reward))
                save_checkpoint({
                    'epoch': t + 1,
                    'state_dict': dqn.save_state_dict(),
                    'best_accuracy': mean_100ep_reward
                }, checkpoint_path)
                saved_mean_reward = mean_100ep_reward
Пример #27
0
    def __init__(self, args, env, writer=None):
        """
        init the agent here
        """
        self.eval_env = copy.deepcopy(env)
        self.args = args

        self.state_dim = env.reset().shape

        self.action_dim = env.action_space.n

        self.device = torch.device("cuda" if (
            torch.cuda.is_available() and self.args.gpu) else "cpu")

        # set the same random seed in the main launcher
        random.seed(self.args.seed)
        torch.manual_seed(self.args.seed)
        np.random.seed(self.args.seed)
        if self.args.gpu:
            torch.cuda.manual_seed(self.args.seed)

        self.writer = writer

        if self.args.env_name == "grid":
            self.dqn = OneHotDQN(self.state_dim,
                                 self.action_dim).to(self.device)
            self.dqn_target = OneHotDQN(self.state_dim,
                                        self.action_dim).to(self.device)
        else:
            raise Exception("not implemented yet!")

        # copy parameters
        self.dqn_target.load_state_dict(self.dqn.state_dict())

        self.optimizer = torch.optim.Adam(self.dqn.parameters(),
                                          lr=self.args.lr)

        # for actors
        def make_env():
            def _thunk():
                env = create_env(args)
                return env

            return _thunk

        envs = [make_env() for i in range(self.args.num_envs)]
        self.envs = SubprocVecEnv(envs)

        # create epsilon and beta schedule
        # NOTE: hardcoded for now
        self.eps_decay = LinearSchedule(50000 * 200, 0.01, 1.0)
        # self.eps_decay = LinearSchedule(self.args.num_episodes * 200, 0.01, 1.0)

        self.total_steps = 0
        self.num_episodes = 0

        # for storing resutls
        self.results_dict = {
            "train_rewards": [],
            "train_constraints": [],
            "eval_rewards": [],
            "eval_constraints": [],
        }

        self.cost_indicator = "none"
        if "grid" in self.args.env_name:
            self.cost_indicator = 'pit'
        else:
            raise Exception("not implemented yet")

        self.eps = self.eps_decay.value(self.total_steps)