Пример #1
0
def main():
    img = open_image("mandril.bmp")
    M = rns_matrix(img, 45, 0.5)
    kps1, des1 = points(img)
    rns = rotate_n_scale(img, M)
    kps2, des2 = points(rns)

    show_image("Original - keypoints", draw_points(img, kps1))
    show_image('Rotated and scaled - keypoints', draw_points(rns, kps2))

    # FLANN parameters
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks=50)   # or pass empty dictionary

    flann = cv2.FlannBasedMatcher(index_params,search_params)

    matches = flann.knnMatch(des1,des2,k=2)
    matches = map(lambda (m, n): m if m.distance < 0.7 * n.distance else n, matches)
    matches = sorted(matches, key=lambda val: val.distance)
    
    iM = cv2.invertAffineTransform(M)
    percetage = perfect_matches(iM, matches, kps1, kps2)

    print str(percetage) + "%"

    drawMatches(img, kps1, rns, kps2, matches)
    
    wait_exit()
def faceclone(src_name, dst_name):
    src_img = cv2.imread(src_name)
    dst_img = cv2.imread(dst_name)

    src_rst = api.detection.detect(img = File(src_name), attribute='pose')
    src_img_width   = src_rst['img_width']
    src_img_height  = src_rst['img_height']
    src_face        = src_rst['face'][0]

    dst_rst = api.detection.detect(img = File(dst_name), attribute='pose')
    dst_img_width   = dst_rst['img_width']
    dst_img_height  = dst_rst['img_height']
    dst_face        = dst_rst['face'][0]

    ss = np.array(get_feature_points(src_face, src_img_width, src_img_height), dtype=np.float32)
    ps = np.array(get_feature_points(dst_face, dst_img_width, dst_img_height), dtype=np.float32)
    map_matrix = cv2.getAffineTransform(ps, ss)

    #dsize = (300,300)
    map_result = cv2.warpAffine(dst_img, map_matrix, dsize=(src_img_width,src_img_height))
    
    extract_mask, center = contour.extract_face_mask(src_face['face_id'], src_img_width, src_img_height, src_name)
    # merge 
    ## first blending the border
    extract_alpha = contour.extract_face_alpha(src_face['face_id'], src_img_width, src_img_height, src_name)
    center = (map_result.shape[0]/2, map_result.shape[1]/2)
    map_result = cv2.seamlessClone(src_img, map_result, extract_mask, center, flags=cv2.NORMAL_CLONE)

    imap_matrix = cv2.invertAffineTransform(map_matrix)
    final = cv2.warpAffine(map_result, imap_matrix, dsize=(dst_img.shape[0:2]))
    return final
Пример #3
0
def affine_skew(tilt, phi, img, mask=None):
    '''
    affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai

    Ai - is an affine transform matrix from skew_img to img
    '''
    h, w = img.shape[:2]
    if mask is None:
        mask = np.zeros((h, w), np.uint8)
        mask[:] = 255
    A = np.float32([[1, 0, 0], [0, 1, 0]])
    if phi != 0.0:
        phi = np.deg2rad(phi)
        s, c = np.sin(phi), np.cos(phi)
        A = np.float32([[c,-s], [ s, c]])
        corners = [[0, 0], [w, 0], [w, h], [0, h]]
        tcorners = np.int32( np.dot(corners, A.T) )
        x, y, w, h = cv2.boundingRect(tcorners.reshape(1,-1,2))
        A = np.hstack([A, [[-x], [-y]]])
        img = cv2.warpAffine(img, A, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)
    if tilt != 1.0:
        s = 0.8*np.sqrt(tilt*tilt-1)
        img = cv2.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
        img = cv2.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv2.INTER_NEAREST)
        A[0] /= tilt
    if phi != 0.0 or tilt != 1.0:
        h, w = img.shape[:2]
        mask = cv2.warpAffine(mask, A, (w, h), flags=cv2.INTER_NEAREST)
    Ai = cv2.invertAffineTransform(A)
    return img, mask, Ai
Пример #4
0
def three_e(affine, a_img, b_img):
    rand = np.zeros((a_img.shape[0], a_img.shape[1]))
    out_warp = cv2.invertAffineTransform(affine)
    warped_image = cv2.warpAffine(b_img.astype(np.uint8),out_warp, (b_img.shape[1], b_img.shape[0]), flags=cv2.INTER_LINEAR)
    write_image(warped_image, "ps5-3-e-1.png")
    merged = cv2.merge((rand.astype(np.uint8),warped_image.astype(np.uint8),a_img.astype(np.uint8)))
    write_image(merged, "ps5-3-e-2.png")
    
    return out_warp
Пример #5
0
def extract_box(img, box, padding_factor = 0.2):
    '''
    we can search for whatever we want in the rotated bordered image, 
    
    Any point found can be translated back to the original image by:
    1. adding the origins of the bordered area,
    2. rotating the point using the inverse rotation matrix    
    
    '''
    
    if box.angle != 0:
        
        b_w = max(img.shape)*2
        b_h = b_w
        dx_center = b_w / 2 - box.center[0]
        dy_center = b_h / 2 - box.center[1]
        new_img = np.zeros((b_w, b_h, 3), dtype = img.dtype)
        new_img[dy_center:(dy_center + img.shape[0]), dx_center:(dx_center + img.shape[1]), :] = img
        
        box_in_big_image = box.points + np.c_[np.ones((4,1)) * dx_center, np.ones((4,1)) * dy_center]

        rot_mat = cv2.getRotationMatrix2D((b_w/2, b_h/2), box.angle, scale = 1.0)
        inv_rot_mat = cv2.invertAffineTransform(rot_mat)
        rot_image = cv2.warpAffine(new_img, rot_mat, (new_img.shape[1],new_img.shape[0]), flags=cv2.INTER_CUBIC)
        box_UL_in_rotated = (rot_mat * np.matrix([box_in_big_image[0,0], box_in_big_image[0,1], 1]).transpose()).transpose().tolist()[0] 
        box_coords_in_rotated = np.matrix(np.c_[box_in_big_image, np.ones((4,1))]) * rot_mat.T
        box_coords_in_rotated = box_coords_in_rotated[0,:].tolist()[0] + [box.dx, box.dy]
    else:
        rot_mat = cv2.getRotationMatrix2D(box.center, box.angle, scale = 1.0)
        inv_rot_mat = cv2.invertAffineTransform(rot_mat)
        # for efficiency
        rot_image = img.copy()
        box_UL_in_rotated = (rot_mat * np.matrix([box.points[0,0], box.points[0,1], 1]).transpose()).transpose().tolist()[0] 
        box_coords_in_rotated = box_UL_in_rotated + [box.dx, box.dy]
    
    img_with_border, Dx, Dy = extract_rect(rot_image, box_coords_in_rotated, padding_factor)
    box_coords_in_bordered = [Dx, Dy] + [box.dx, box.dy]
    border_UL_in_rotated = [box_UL_in_rotated[0]-Dx, box_UL_in_rotated[1]-Dy]
    
    return img_with_border, box_coords_in_bordered, border_UL_in_rotated, inv_rot_mat
Пример #6
0
 def get_original_roi(self, mat, size, padding=0):
     """ Return the square aligned box location on the original
         image """
     logger.trace("matrix: %s, size: %s. padding: %s", mat, size, padding)
     matrix = self.transform_matrix(mat, size, padding)
     points = np.array([[0, 0],
                        [0, size - 1],
                        [size - 1, size - 1],
                        [size - 1, 0]], np.int32)
     points = points.reshape((-1, 1, 2))
     matrix = cv2.invertAffineTransform(matrix)  # pylint: disable=no-member
     logger.trace("Returning: (points: %s, matrix: %s", points, matrix)
     return cv2.transform(points, matrix)  # pylint: disable=no-member
Пример #7
0
    def detect(self, img, degree=DEFAULT_DEGREE, debug=False, min_size=150):
        """
        Detect people in the image.
        :param debug: show each rotated image and press to continue
        :param img: source image
        :param degree: delta angle for rotations.
        :param min_size: minimum height in pixels for a person
        """
        # Rotate image
        image_list = self.rotate_image(img, degree)

        detected_pols = []
        # For each rotated image
        for image, rotation_matrix in image_list:
            # Run HOG
            detected_rectangles, w = self.hog.detectMultiScale(image,
                                                               winStride=(8, 8), padding=(32, 32), scale=1.05)

            if debug:
                self.draw_detections(image, detected_rectangles)
                cv2.imshow("test", image)
                cv2.waitKey(0)

            # Inverted matrix
            inv_mat = cv2.invertAffineTransform(rotation_matrix)

            # For each detected person
            for x, y, w, h in detected_rectangles:

                # WARNING: size of the person is known a priori
                if w < min_size:
                    continue

                # transform
                # transformed_point
                p1 = inv_mat.dot(np.array([x, y, 1])).tolist()
                p2 = inv_mat.dot(np.array([x + w, y, 1])).tolist()
                p3 = inv_mat.dot(np.array([x + w, y + h, 1])).tolist()
                p4 = inv_mat.dot(np.array([x, y + h, 1])).tolist()

                polygon = [p1, p2, p3, p4]

                # Add to the list
                detected_pols.append(polygon)

        return detected_pols
Пример #8
0
def affine_skew(tilt, phi, img, mask=None):
    """
    Increase robustness to descriptors by calculating other invariant perspectives to image.

    :param tilt: tilting of image
    :param phi: rotation of image (in degrees)
    :param img: image to find Affine transforms
    :param mask: mask to detect keypoints (it uses default, mask[:] = 255)
    :return: skew_img, skew_mask, Ai (invert Affine Transform)

    Ai - is an affine transform matrix from skew_img to img

    """
    h, w = img.shape[:2]  # get 2D shape
    if mask is None:
        mask = np.zeros((h, w), np.uint8)
        mask[:] = 255
    A = np.float32([[1, 0, 0], [0, 1, 0]])  # init Transformation matrix
    if phi != 0.0:  # simulate rotation
        phi = np.deg2rad(phi)  # convert degrees to radian
        s, c = np.sin(phi), np.cos(phi)  # get sine, cosine components
        # build partial Transformation matrix
        A = np.float32([[c, -s], [s, c]])
        corners = [[0, 0], [w, 0], [w, h], [0, h]]  # use corners
        tcorners = np.int32(np.dot(corners, A.T))  # transform corners
        x, y, w, h = cv2.boundingRect(
            tcorners.reshape(1, -1, 2))  # get translations
        A = np.hstack([A, [[-x], [-y]]])  # finish Transformation matrix build
        img = cv2.warpAffine(
            img, A, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)
    if tilt != 1.0:
        s = 0.8 * np.sqrt(tilt * tilt - 1)  # get sigma
        # blur image with gaussian blur
        img = cv2.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
        img = cv2.resize(img, (0, 0), fx=1.0 / tilt, fy=1.0,
                         interpolation=cv2.INTER_NEAREST)  # resize
        A[0] /= tilt
    if phi != 0.0 or tilt != 1.0:
        h, w = img.shape[:2]  # get new 2D shape
        # also get mask transformation
        mask = cv2.warpAffine(mask, A, (w, h), flags=cv2.INTER_NEAREST)
    Ai = cv2.invertAffineTransform(A)
    return img, mask, Ai
Пример #9
0
        return ret, M


ctx_id = 4
img_path = '../deploy/Tom_Hanks_54745.png'
img = cv2.imread(img_path)
#img = np.zeros( (128,128,3), dtype=np.uint8 )

handler = Handler('./model/HG', 1, ctx_id)
for _ in range(10):
    ta = datetime.datetime.now()
    landmark, M = handler.get(img)
    tb = datetime.datetime.now()
    print('get time cost', (tb - ta).total_seconds())
#visualize landmark
IM = cv2.invertAffineTransform(M)
for i in range(landmark.shape[0]):
    p = landmark[i]
    point = np.ones((3, ), dtype=np.float32)
    point[0:2] = p
    point = np.dot(IM, point)
    landmark[i] = point[0:2]

for i in range(landmark.shape[0]):
    p = landmark[i]
    point = (int(p[0]), int(p[1]))
    cv2.circle(img, point, 1, (0, 255, 0), 2)

filename = './landmark_test.png'
print('writing', filename)
cv2.imwrite(filename, img)
Пример #10
0
def transformPointsInverse(T,width,height):
    T=cv2.invertAffineTransform(T)
    return transformPointsForward(T,width,height)
Пример #11
0
    def estimate(self, frame):
        """Estimate the warp parameters that best fit the given frame.

        Note that this implicitly assumes that frames are supplied
        in sequence. This method uses the previously solved for warp 
        parameters of (presumably) the previous frame in the same sequence.
        """

        # start with our previous parameter estimate
        p = self.p
        dP = np.zeros(6)
        dP_prev = dP + np.inf

        # precompute anything we can
        frame_gradient = [
            cv2.Sobel(np.float32(frame), cv2.CV_32F, 1, 0, ksize=3),
            cv2.Sobel(np.float32(frame), cv2.CV_32F, 0, 1, ksize=3)
        ]

        # begin iteration until gradient descent converges
        count = 0
        st = time.time()
        norm_hist = []
        while np.linalg.norm(dP -
                             dP_prev) > self.epsilon or count < self.min_count:
            # get representation of affine transform
            W = np.array([[1, 0, 0], [0, 1, 0]]) + p
            W = cv2.invertAffineTransform(W)

            # warp image with current parameter estimate
            I = cv2.warpAffine(cv2.warpAffine(frame, W, self.shape),
                               self.H[:2], self.shape)

            # convert various entities to floating point
            I = np.float32(I)
            grad = np.float32(frame_gradient)

            # scale to match template frame brightness
            #  note: this fails if our previous estimate is bad.
            #        we're probably already in a dead-end, but might as well try.
            if I.mean() != 0:
                scale = self.template.mean() / I.mean()
                I *= scale

            # compute error image
            E = self.template - I

            I_grad = np.array([
                cv2.warpAffine(cv2.warpAffine(grad[0], W, self.shape),
                               self.H[:2], self.shape),
                cv2.warpAffine(cv2.warpAffine(grad[1], W, self.shape),
                               self.H[:2], self.shape)
            ])

            # calculate steepest descent matrix
            D1 = I_grad[0][..., np.newaxis] * self.J[:, :, 0, :]
            D2 = I_grad[1][..., np.newaxis] * self.J[:, :, 1, :]
            D = D1 + D2

            # calculate huber loss matrix
            H_w = 0.5 * (E * E)
            H_w[abs(E) > self.sigma] = (self.sigma * abs(E) -
                                        0.5 * self.sigma)[abs(E) > self.sigma]

            # calculate Hessian and remaining terms needed to solve for dP
            H = np.tensordot(D,
                             H_w[..., np.newaxis] * D,
                             axes=((0, 1), (0, 1)))
            O = (D * (H_w * E)[..., np.newaxis]).sum((0, 1))

            # calculate parameter delta
            try:
                dP_prev = dP
                dP = np.linalg.inv(H) @ O
            except np.linalg.LinAlgError:
                return False, None

            # update parameter estimates
            p += dP.reshape(3, 2).T

            # update our counter and evaluate stop criterion
            norm_hist.append(np.linalg.norm(dP - dP_prev))
            count += 1

            if count % 100 == 0:
                # check if we need a bump
                if np.std(norm_hist[-50:]) < 0.05:
                    p += np.random.random(p.shape) / 5 - 0.1

            # stop after max_count iterations
            if count >= self.max_count:
                return False, p

        # we've converged: update current location estimate
        self.p = p
        return True, p
def process(args):
#	print "process\n",args
	img1 = args['img1']
	idir = args['idir']
	odir = args['odir']
	dat = args['dat']
	tim = args['tim']
	filename = args['filename']
	cmap = args['cmap']
	

	iframe=int(filename[9:12])	             #frame number [001,002,...]
	frame_name=os.path.join(idir,filename)	 #full path filename

	print 'process( %s )'% frame_name

	# create a mask that processes only the central region
	mask = zeros(img1.shape,dtype=uint8)
	mask[20:1040,140:1500] = 1

	# mask for black border on saved image
	fmask = zeros(img1.shape,dtype=uint8)	# black
	fmask[20:1050,90:1680] = 1	#y,x

	# create an OpenCV SURF (Speeded Up Robust Features) object
	hessianThreshold = 1200

	img2 = read_frame(frame_name)
 #       img2 = enhance_image(img2,cmap)
	detector = cv2.SURF(hessianThreshold)
	kp1, desc1 = detector.detectAndCompute(img1, mask)
	kp2, desc2 = detector.detectAndCompute(img2, mask)

	desc1.shape = (-1, detector.descriptorSize())
	desc2.shape = (-1, detector.descriptorSize())
	r_threshold = 0.75
	m = match_bruteforce(desc1, desc2, r_threshold)
	u1 = np.array([kp1[i].pt for i, j in m])
	u2 = np.array([kp2[j].pt for i, j in m])
	H, status = cv2.findHomography(u1, u2, cv2.RANSAC, 1.0)
	M=H[0:2,:]
		
		# this affine matrix from findHomography is not as constrained as doing
		# least-squares to allow affine only, so only use the 'status' 
		# from findHomography to indicate
		# "good pairs of points" to use in least-squares fit below

	ind=where(status)[0]
			
	M,p = affine_lsq(u1[ind],u2[ind])
		# invert the affine matrix so we can register image 2 to image 1
	Minv = cv2.invertAffineTransform(M)
	img2b = cv2.warpAffine(img2,Minv,np.shape(img2.T))

	# transform successive frames rather than just the 1st frame
	# comment this out to just difference on the 1st frame
	#img1=img2b
		
		# fill in left side with grey from single pixel
	img2b[0:624,90:152] = img2b[625,152] 
	img2b[624:,90:109] = img2b[625,152]
		
	# create PIL image
	# overlay registered image with black border to eliminate
	# annoying jumping of ragged border regions when animating

	im = Image.fromarray(img2b*fmask)
	
	im = enhance_im(im,cmap)

        
	# annotate frame with date and time
	print filename,dat,tim
	annotate_frame(im,iframe,dat,tim)
	
  
        
	plotpoints=False
	if plotpoints:
		plot_points(img1,img2,u1,u2,ind,p,iframe)
        
	im.save(('%s/%3.3d.png' % (odir,iframe)),'png')
Пример #13
0
    # imgRotation2 = cv2.warpAffine(img, matRotation2, (widthNew, heightNew), borderValue=(255, 255, 255))
    imgRotation2 = getWrapImage(img, matRotation2, widthNew, heightNew)
    return imgRotation, imgRotation2, matRotation


def draw_box(img, box):
    cv2.line(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 3)
    cv2.line(img, (box[0], box[1]), (box[4], box[5]), (0, 255, 0), 3)
    cv2.line(img, (box[2], box[3]), (box[6], box[7]), (0, 255, 0), 3)
    cv2.line(img, (box[4], box[5]), (box[6], box[7]), (0, 255, 0), 3)
    return img


image = cv2.imread('/Users/austinjing/Documents/Aye/RotateImage/test.jpg')
imgRotation, imgRotation2, matRotation = dumpRotateImage(image, 15)
box = [200, 250, 250, 200, 230, 280, 280, 230]

reverseMatRotation = cv2.invertAffineTransform(matRotation)
pt1 = np.dot(reverseMatRotation, np.array([[box[0]], [box[1]], [1]]))
pt2 = np.dot(reverseMatRotation, np.array([[box[2]], [box[3]], [1]]))
pt3 = np.dot(reverseMatRotation, np.array([[box[4]], [box[5]], [1]]))
pt4 = np.dot(reverseMatRotation, np.array([[box[6]], [box[7]], [1]]))

#print(pt1, pt2, pt3, pt4)
box2 = [pt1[0], pt1[1], pt2[0], pt2[1], pt3[0], pt3[1], pt4[0], pt4[1]]

cv2.imwrite('/Users/austinjing/Documents/Aye/RotateImage/drawBox.jpg',
            draw_box(imgRotation, box))
cv2.imwrite('/Users/austinjing/Documents/Aye/RotateImage/raw.png',
            draw_box(image, box2))
Пример #14
0
 def get(self, img):
     out = []
     out_lands = []
     limit = 512
     det_scale = 1.0
     if min(img.shape[0:2]) > limit:
         det_scale = float(limit) / min(img.shape[0:2])
     bboxes, landmarks = self.detector.detect(img, scale=det_scale)
     if bboxes.shape[0] == 0:
         return out
     for fi in range(bboxes.shape[0]):
         bbox = bboxes[fi]
         landmark = landmarks[fi]
         input_blob = np.zeros((self.aug, 3) + self.image_size,
                               dtype=np.uint8)
         M_list = []
         #   ta = datetime.datetime.now()
         for retry in range(self.aug):
             #found = False
             #for _ in range(10):
             #    diff = np.random.rand(5,2)*2.0-1.0
             #    #diff *= self.aug_value
             #    av = min(self.aug_value, (retry//2))
             #    diff *= av
             #    pts5 = landmark+diff
             #    if pts5[0][0]<pts5[1][0] and pts5[3][0]<pts5[4][0]:
             #        found = True
             #        break
             #if not found:
             #    pts5 = landmark
             #diff = np.clip(diff, max_diff*-1, max_diff)
             #M = estimate_trans(pts5, self.image_size[0], s = 0.7)
             #rimg = cv2.warpAffine(img, M, self.image_size, borderValue = 0.0)
             w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
             center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
             rotate = 0
             _scale = 128.0 / max(w, h)
             rimg, M = img_helper.transform(img, center, self.image_size[0],
                                            _scale, rotate)
             #cv2.imwrite('./vis/rimg.jpg', rimg)
             #if retry%2==1:
             #    rimg = rimg[:,::-1,:]
             rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB)
             rimg = np.transpose(rimg, (2, 0, 1))  #3*112*112, RGB
             input_blob[retry] = rimg
             M_list.append(M)
         data = mx.nd.array(input_blob)
         db = mx.io.DataBatch(data=(data, ))
         for model in self.models:
             model.forward(db, is_train=False)
         X = None
         for model in self.models:
             #model.forward(db, is_train=False)
             x = model.get_outputs()[-1].asnumpy()
             if X is None:
                 X = x
             else:
                 X += x
         X /= len(self.models)
         #print(X.shape)
         if X.shape[1] >= 3000:
             X = X.reshape((X.shape[0], -1, 3))
         else:
             X = X.reshape((X.shape[0], -1, 2))
         #print(X.shape)
         X[:, :, 0:2] += 1
         X[:, :, 0:2] *= (self.image_size[0] // 2)
         if X.shape[2] == 3:
             X[:, :, 2] *= (self.image_size[0] // 2)
         #X *= self.image_size[0]
         for i in range(X.shape[0]):
             M = M_list[i]
             IM = cv2.invertAffineTransform(M)
             x = X[i]
             x = img_helper.trans_points(x, IM)
             X[i] = x
         ret = np.mean(X, axis=0)
         #   tb = datetime.datetime.now()
         #print('module time cost', (tb-ta).total_seconds())
         out.append(ret)
         out_lands.append(landmark)
     return out, out_lands
Пример #15
0
def stabilise_image(thermogram,
                    frames_to_process=-1,
                    start_frame=-1,
                    global_motion=False):
    ''' Stabilises an input video as a 3D numpy array. Can use global motion to maintain a 
    single dimension of movement; useful for implementing DPPT.
     
    Expects a thermogram as a 3D numpy multdimensional array where
    each dimension is: [frame, row, column]. 
    Frames_to_process sets the numbers of frames to use in FFT analysis, uses all frames
    by default.
    Frame_start is the first frame to process.
    Return_phase controls what phase will be returned, 0 is always a blank map;
    should almost always be 1.
    Global_motion indicates whether global motion should be used
    Returns an array in the format: [frame_index, row, column]
    '''

    #Store original frames_to_process, as it is changed later in the code
    _frames_to_process = frames_to_process
    #CV requires frames to be 8 bit map any numpy array to 8bit
    framesU8 = file_io_thermal._convert_to_u_int8(thermogram)

    #read the shape of the images
    height, width = thermogram[0].shape

    #set a transform matrix
    transformed_frames = [np.identity(3)]

    #create a global motion matrix if specified
    if global_motion:

        #create a translation matrix, this will remove everything except the translation of the t'form
        translation_matrix = np.array([[0, 0, 1], [0, 0, 1]])

        #initialise global transform as nonetype
        global_transform = None

        while (global_transform is None):
            #translation and frames_to_process arrays which will be applied to get the global translation per frame
            frames_to_process_matrix = np.array(
                [[1, frames_to_process, frames_to_process],
                 [frames_to_process, 1, frames_to_process]])
            #used to find global motion, will instead take frame sizes
            #find global transformation
            #find points (good Features) on the final and current frames and map them
            global_previous_points = cv2.goodFeaturesToTrack(
                framesU8[frames_to_process - 1], 100, 0.1, 1)
            global_current_points, global_status, _ = cv2.calcOpticalFlowPyrLK(
                framesU8[0], framesU8[frames_to_process - 1],
                global_previous_points, np.array([]))
            global_previous_points, global_current_points = map(
                lambda corners: corners[global_status.ravel().astype(bool)],
                [global_previous_points, global_current_points])
            global_transform = cv2.estimateRigidTransform(
                global_previous_points, global_current_points, False)

            #if global transform does not occur, take the 10 off the frames_to_process
            frames_to_process = int(
                round(frames_to_process - (frames_to_process * 0.1)))

        #if global transform can be found, create global transform matrix and reset frames_to_process
        frames_to_process_transform_matrix = np.divide(
            global_transform, frames_to_process_matrix)
        global_transform_matrix = np.multiply(
            frames_to_process_transform_matrix, translation_matrix)
        frames_to_process = _frames_to_process

    #initialise frame 1
    i = start_frame + 1  #+1 because tracking must start from the second frame
    while i < (start_frame + frames_to_process):

        #get current frame (uint8)
        current_frame = framesU8[i]
        #find points (good Features) on the previous and current frames and map them
        previous_points = cv2.goodFeaturesToTrack(current_frame, 100, 0.1, 1)
        current_points, status, _ = cv2.calcOpticalFlowPyrLK(
            framesU8[i - 1], current_frame, previous_points, np.array([]))
        previous_points, current_points = map(
            lambda corners: corners[status.ravel().astype(bool)],
            [previous_points, current_points])
        transform = cv2.estimateRigidTransform(previous_points, current_points,
                                               False)

        if global_motion:
            #take out the global transformation from the current transform
            transform = np.subtract(transform, global_transform_matrix)

        #append the transform onto the transforms.
        if transform is not None:
            transform = np.append(transform, [[0, 0, 1]], axis=0)
        if transform is None:
            transform = transformed_frames[-1]
        transformed_frames.append(transform)
        i = i + 1

    #create a stabilised frames array and apply the transform to each frame in the image.
    stabilised_frames = []
    final_transform = np.identity(3)
    thermogram = thermogram[start_frame:start_frame + frames_to_process, :, :]
    for frame, transform, index in zip(thermogram, transformed_frames,
                                       range(len(thermogram))):
        transform = transform.dot(final_transform)
        if index % frames_to_process == 0:
            transform = np.identity(3)
        final_transform = transform
        inverse_transform = cv2.invertAffineTransform(transform[:2])
        stabilised_frames.append(
            cv2.warpAffine(frame, inverse_transform, (width, height)))

    stabilisedFrames = np.stack(stabilised_frames, axis=0)

    #return the new stabilised image
    return stabilisedFrames
Пример #16
0
    def align(self,
              T,
              I,
              rect,
              p,
              dp0=np.zeros(6),
              threshold=0.001,
              iterations=50):

        cap = get_frames(self.vid)
        T_rows, T_cols = T.shape
        I_rows, I_cols = I.shape
        dp = dp0

        for i in range(iterations):
            # Forward warp matrix from frame_t to frame_t+1
            W = np.float32([[1 + p[0], p[2], p[4]], [p[1], 1 + p[3], p[5]]])

            # Warp image from frame_t+1 to frame_t and crop it
            I_warped = cv2.warpAffine(I, cv2.invertAffineTransform(W),
                                      (I_cols, I_rows))
            I_warped = cap.crop_im(I_warped, rect)

            # Image gradients
            temp = cv2.Sobel(I_warped, cv2.CV_32F, 1, 0, ksize=3)
            print(temp)
            print(temp.shape)
            dI_x = temp.flatten()
            dI_y = cv2.Sobel(I_warped, cv2.CV_32F, 0, 1, ksize=3).flatten()

            A = np.zeros(6).reshape(1, 6)
            for y in range(T_rows):
                for x in range(T_cols):
                    dW = np.array([[x, 0, y, 0, 1, 0], [0, x, 0, y, 0, 1]])
                    dI = np.array([dI_x[x * y], dI_y[x * y]]).reshape(1, 2)
                    A = np.vstack((A, np.matmul(dI, dW).reshape(1, 6)))
                    # print(np.shape(A))

            # Steepest descent
            A = np.sum(A, axis=0).reshape(1, 6)
            # Hessian
            # print(np.shape(A))
            H = np.matmul(A.T, A)
            w, v = np.linalg.eig(H)
            # print(w)
            # Error image
            err_im = (T - I_warped).flatten()
            err_im = np.reshape(err_im, (1, len(err_im)))

            del_p = np.sum(np.matmul(np.linalg.pinv(H), np.matmul(A.T,
                                                                  err_im)),
                           axis=1)

            # Test for convergence and exit
            if np.linalg.norm(del_p) <= threshold:
                break

            # Update the parameters
            p = p + del_p

        return p
Пример #17
0
	def detect(self,frame):
		rects=[]
		acount=0
		dx=30
		angle=self.prev_angle
		maxtimes=360/dx+1
		times=0
		angle=self.prev_angle

		img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
		rimg = cv2.resize(img,None,fx=self.scale, fy=self.scale, interpolation = cv2.INTER_LINEAR)
		
		while len(rects)==0 and acount<maxtimes:
			rows,cols = rimg.shape
			times=times+1
			
			M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
			
			imgw = cv2.warpAffine(rimg,M,(cols,rows))
			rects = self.cascade.detectMultiScale(imgw, scaleFactor=self.scaleFactor, minNeighbors=4, minSize=self.minSize, flags = 2)
			acount=acount+1
			sign=pow(-1,acount)
			self.prev_angle=angle
			angle=angle+(sign*acount*dx)
			angle=angle%360
		if len(rects) == 0:
			return None
		
		#print('rect=2',rects)
		re_rect=rects
		rects[:,2:] += rects[:,:2]
		
		

		points=[]

		try:
			x1, y1, x2, y2 =rects[0]

			height=x2-x1
			width=y2-y1

			points.append((x1,y1))
			points.append((x1,y1+width))
			points.append((x2,y2))

			points.append((x2,y2-width))
		except:
			pass


		self.prev_points=points

		npoints=None


		if len(points)==4:

	
			c=np.array(points)


			iM=cv2.invertAffineTransform(M)


			extra=np.array([0.0,0.0,1.0])

			iM=np.vstack((iM,extra))


			cc=np.array([c],dtype='float')


			conv=cv2.perspectiveTransform(cc,iM)

			npoints=[]

			for vv in conv[0]:
				
				npoints.append((int(vv[0]/self.scale),int(vv[1]/self.scale)))

		

		print('whole card angel:',angle)
		if(angle !=''):

			return npoints,re_rect,angle

		else:
			angle=0
			return npoints,re_rect,angle
Пример #18
0
def rotate_landmarks(face, rotation_matrix):
    """ Rotate the landmarks and bounding box for faces
        found in rotated images.
        Pass in a DetectedFace object, Alignments dict or DLib rectangle"""
    logger.trace("Rotating landmarks: (rotation_matrix: %s, type(face): %s",
                 rotation_matrix, type(face))
    if isinstance(face, DetectedFace):
        bounding_box = [[face.x, face.y],
                        [face.x + face.w, face.y],
                        [face.x + face.w, face.y + face.h],
                        [face.x, face.y + face.h]]
        landmarks = face.landmarksXY

    elif isinstance(face, dict):
        bounding_box = [[face.get("x", 0), face.get("y", 0)],
                        [face.get("x", 0) + face.get("w", 0),
                         face.get("y", 0)],
                        [face.get("x", 0) + face.get("w", 0),
                         face.get("y", 0) + face.get("h", 0)],
                        [face.get("x", 0),
                         face.get("y", 0) + face.get("h", 0)]]
        landmarks = face.get("landmarksXY", list())

    elif isinstance(face,
                    dlib.rectangle):  # pylint: disable=c-extension-no-member
        bounding_box = [[face.left(), face.top()],
                        [face.right(), face.top()],
                        [face.right(), face.bottom()],
                        [face.left(), face.bottom()]]
        landmarks = list()
    else:
        raise ValueError("Unsupported face type")

    logger.trace("Original landmarks: %s", landmarks)

    rotation_matrix = cv2.invertAffineTransform(  # pylint: disable=no-member
        rotation_matrix)
    rotated = list()
    for item in (bounding_box, landmarks):
        if not item:
            continue
        points = np.array(item, np.int32)
        points = np.expand_dims(points, axis=0)
        transformed = cv2.transform(points,  # pylint: disable=no-member
                                    rotation_matrix).astype(np.int32)
        rotated.append(transformed.squeeze())

    # Bounding box should follow x, y planes, so get min/max
    # for non-90 degree rotations
    pt_x = min([pnt[0] for pnt in rotated[0]])
    pt_y = min([pnt[1] for pnt in rotated[0]])
    pt_x1 = max([pnt[0] for pnt in rotated[0]])
    pt_y1 = max([pnt[1] for pnt in rotated[0]])

    if isinstance(face, DetectedFace):
        face.x = int(pt_x)
        face.y = int(pt_y)
        face.w = int(pt_x1 - pt_x)
        face.h = int(pt_y1 - pt_y)
        face.r = 0
        if len(rotated) > 1:
            rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
            face.landmarksXY = rotated_landmarks
    elif isinstance(face, dict):
        face["x"] = int(pt_x)
        face["y"] = int(pt_y)
        face["w"] = int(pt_x1 - pt_x)
        face["h"] = int(pt_y1 - pt_y)
        face["r"] = 0
        if len(rotated) > 1:
            rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
            face["landmarksXY"] = rotated_landmarks
    else:
        rotated_landmarks = dlib.rectangle(  # pylint: disable=c-extension-no-member
            int(pt_x), int(pt_y), int(pt_x1), int(pt_y1))
        face = rotated_landmarks

    logger.trace("Rotated landmarks: %s", rotated_landmarks)
    return face
Пример #19
0
def rotate_landmarks(face, rotation_matrix):
    # pylint:disable=c-extension-no-member
    """ Rotate the landmarks and bounding box for faces
        found in rotated images.
        Pass in a DetectedFace object, Alignments dict or bounding box dict
        (as defined in lib/plugins/extract/detect/_base.py) """
    logger = logging.getLogger(__name__)  # pylint:disable=invalid-name
    logger.trace("Rotating landmarks: (rotation_matrix: %s, type(face): %s",
                 rotation_matrix, type(face))
    # Detected Face Object
    if isinstance(face, DetectedFace):
        bounding_box = [[face.x, face.y], [face.x + face.w, face.y],
                        [face.x + face.w, face.y + face.h],
                        [face.x, face.y + face.h]]
        landmarks = face.landmarksXY

    # Alignments Dict
    elif isinstance(face, dict) and "x" in face:
        bounding_box = [
            [face.get("x", 0), face.get("y", 0)],
            [face.get("x", 0) + face.get("w", 0),
             face.get("y", 0)],
            [
                face.get("x", 0) + face.get("w", 0),
                face.get("y", 0) + face.get("h", 0)
            ], [face.get("x", 0),
                face.get("y", 0) + face.get("h", 0)]
        ]
        landmarks = face.get("landmarksXY", list())

    # Bounding Box Dict
    elif isinstance(face, dict) and "left" in face:
        bounding_box = [[face["left"], face["top"]],
                        [face["right"], face["top"]],
                        [face["right"], face["bottom"]],
                        [face["left"], face["bottom"]]]
        landmarks = list()

    else:
        raise ValueError("Unsupported face type")

    logger.trace("Original landmarks: %s", landmarks)

    rotation_matrix = cv2.invertAffineTransform(  # pylint:disable=no-member
        rotation_matrix)
    rotated = list()
    for item in (bounding_box, landmarks):
        if not item:
            continue
        points = np.array(item, np.int32)
        points = np.expand_dims(points, axis=0)
        transformed = cv2.transform(
            points,  # pylint:disable=no-member
            rotation_matrix).astype(np.int32)
        rotated.append(transformed.squeeze())

    # Bounding box should follow x, y planes, so get min/max
    # for non-90 degree rotations
    pt_x = min([pnt[0] for pnt in rotated[0]])
    pt_y = min([pnt[1] for pnt in rotated[0]])
    pt_x1 = max([pnt[0] for pnt in rotated[0]])
    pt_y1 = max([pnt[1] for pnt in rotated[0]])
    width = pt_x1 - pt_x
    height = pt_y1 - pt_y

    if isinstance(face, DetectedFace):
        face.x = int(pt_x)
        face.y = int(pt_y)
        face.w = int(width)
        face.h = int(height)
        face.r = 0
        if len(rotated) > 1:
            rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
            face.landmarksXY = rotated_landmarks
    elif isinstance(face, dict) and "x" in face:
        face["x"] = int(pt_x)
        face["y"] = int(pt_y)
        face["w"] = int(width)
        face["h"] = int(height)
        face["r"] = 0
        if len(rotated) > 1:
            rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
            face["landmarksXY"] = rotated_landmarks
    else:
        face["left"] = int(pt_x)
        face["top"] = int(pt_y)
        face["right"] = int(pt_x1)
        face["bottom"] = int(pt_y1)

    logger.trace("Rotated landmarks: %s", rotated_landmarks)
    return face
Пример #20
0
def face_swap(orig_image, down_scale, index):
    # extract face from original
    facelist = extract_faces(orig_image, 256)
    if len(facelist) > 0:
        print("saving this frame: " + str(index))
        path = './images'
        # only write frame into file if found faces.
        cv2.imwrite(os.path.join(path, 'ori' + str(index) + '.jpg'),
                    orig_image)
    result_image = orig_image

    # iterate through all detected faces
    for (face, resized_image) in enumerate(facelist):
        range_ = numpy.linspace(128 - 80, 128 + 80, 5)
        mapx = numpy.broadcast_to(range_, (5, 5))
        mapy = mapx.T

        # warp image like in the training
        mapx = mapx + numpy.random.normal(size=(5, 5), scale=5)
        mapy = mapy + numpy.random.normal(size=(5, 5), scale=5)

        src_points = numpy.stack([mapx.ravel(), mapy.ravel()], axis=-1)
        dst_points = numpy.mgrid[0:65:16, 0:65:16].T.reshape(-1, 2)
        mat = umeyama(src_points, dst_points, True)[0:2]

        # resized_image = np.float32(resized_image)
        # print(resized_image[0].shape)
        warped_resized_image = cv2.warpAffine(resized_image[0], mat,
                                              (64, 64)) / 255.0

        test_images = numpy.empty((1, ) + warped_resized_image.shape)
        test_images[0] = warped_resized_image

        # predict faceswap using encoder A
        # figure = autoencoder_A.predict(test_images)
        cv2.imwrite('./images/ori-image' + str(index), warped_resized_image)

        # print(warped_resized_image.shape)
        out = model.forward(warped_resized_image, select='B')

        new_face = numpy.clip(out.detach().cpu().numpy()[0] * 255.0, 0,
                              255).astype('uint8')

        cv2.imwrite('./images/new-image' + str(index), new_face)

        mat_inv = umeyama(dst_points, src_points, True)[0:2]

        # insert face into extracted face
        dest_face = blend_warp(new_face, resized_image, mat_inv)

        # create an inverse affine transform matrix to insert extracted face again
        mat = get_align_mat(face)
        mat = mat * (256 - 2 * 48)
        mat[:, 2] += 48
        mat_inv = cv2.invertAffineTransform(mat)
        # insert new face into original image
        result_image = blend_warp(dest_face, result_image, mat_inv)

    # return resulting image after downscale
    return cv2.resize(result_image, (result_image.shape[1] // down_scale,
                                     result_image.shape[0] // down_scale))
Пример #21
0
    def align(self, image, gray, rect, z_addition):
        # convert the landmark (x, y)-coordinates to a NumPy
        h1, w1 = image.shape[:2]
        shape = self.predictor(gray, rect)
        shape = shape_to_np(shape)

        #simple hack ;)
        if (len(shape)==68):
            # extract the left and right eye (x, y)-coordinates
            (lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"]
            (rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"]
        else:
            (lStart, lEnd) = FACIAL_LANDMARKS_5_IDXS["left_eye"]
            (rStart, rEnd) = FACIAL_LANDMARKS_5_IDXS["right_eye"]

        leftEyePts = shape[lStart:lEnd]
        rightEyePts = shape[rStart:rEnd]

        # compute the center of mass for each eye
        leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
        rightEyeCenter = rightEyePts.mean(axis=0).astype("int")

        # compute the angle between the eye centroids
        dY = rightEyeCenter[1] - leftEyeCenter[1]
        dX = rightEyeCenter[0] - leftEyeCenter[0]
        angle = np.degrees(np.arctan2(dY, dX)) - 180

        # compute the desired right eye x-coordinate based on the
        # desired x-coordinate of the left eye
        desiredRightEyeX = 1.0 - self.desiredLeftEye[0]

        # determine the scale of the new resulting image by taking
        # the ratio of the distance between eyes in the *current*
        # image to the ratio of distance between eyes in the
        # *desired* image
        dist = np.sqrt((dX ** 2) + (dY ** 2))
        desiredDist = (desiredRightEyeX - self.desiredLeftEye[0])
        desiredDist *= self.desiredFaceWidth
        scale = desiredDist / dist

        # compute center (x, y)-coordinates (i.e., the median point)
        # between the two eyes in the input image
        eyesCenter = ((leftEyeCenter[0] + rightEyeCenter[0]) // 2,
            (leftEyeCenter[1] + rightEyeCenter[1]) // 2)

        # grab the rotation matrix for rotating and scaling the face
        M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)

        # update the translation component of the matrix
        tX = self.desiredFaceWidth * 0.5
        tY = self.desiredFaceHeight * self.desiredLeftEye[1]
        M[0, 2] += (tX - eyesCenter[0])
        M[1, 2] += (tY - eyesCenter[1])

        # apply the affine transformation
        (w, h) = (self.desiredFaceWidth, self.desiredFaceHeight)
        output = cv2.warpAffine(image, M, (w, h),
            flags=cv2.INTER_CUBIC)

        # invert the previous affine transformation for later
        Mi = cv2.invertAffineTransform(M)

        # BGR -> RGB
        output = output[:,:,::-1]

        # encode with GLOW, do operations on z
        z = encode(output)
        z[0] += z_addition

        # decode back to image and back to BGR
        output = decode(z)[0]
        output = output[:,:,::-1]

        # invert the affine transformation on output
        output = cv2.warpAffine(output, Mi, (w1, h1),
            flags=cv2.INTER_CUBIC)

        # overwrite original image with masked output
        mask = np.sum(output, axis=2) == 0.0
        image = np.multiply(mask.reshape((h1, w1, 1)), image)
        image += output

        return image
Пример #22
0
    #for x in xrange(src_img_width):
    #    for y in xrange(src_img_height):
    #        alpha = extract_alpha[y][x]
    #        map_result[y][x][0] = (1-alpha) * map_result[y][x][0] + (alpha) * src_img[y][x][0]
    #        map_result[y][x][1] = (1-alpha) * map_result[y][x][1] + (alpha) * src_img[y][x][1]
    #        map_result[y][x][2] = (1-alpha) * map_result[y][x][2] + (alpha) * src_img[y][x][2]

    #cv2.imshow('map result', map_result)

    #center = src_face['position']['nose']
    #x = center['x'] * src_img_width / 100
    #y = center['y'] * src_img_height / 100
    #center = (int(x), int(y))
    center = (map_result.shape[0] / 2, map_result.shape[1] / 2)
    map_result = cv2.seamlessClone(src_img,
                                   map_result,
                                   extract_mask,
                                   center,
                                   flags=cv2.NORMAL_CLONE)

    cv2.imshow('merge', map_result)

    imap_matrix = cv2.invertAffineTransform(map_matrix)
    print map_result.shape
    print imap_matrix
    final = cv2.warpAffine(map_result, imap_matrix, dsize=(dst_img.shape[0:2]))
    cv2.imshow('final.png', final)
    cv2.imwrite(src_name + dst_name + 'final.png', final)

    cv2.waitKey(0)
Пример #23
0
    ss = np.array(get_feature_points(src_face, src_img_width, src_img_height), dtype=np.float32)
    ps = np.array(get_feature_points(dst_face, dst_img_width, dst_img_height), dtype=np.float32)

    print ps
    print ss
    map_matrix = cv2.getAffineTransform(ps, ss)
    print map_matrix

    #dsize = (300,300)
    map_result = cv2.warpAffine(dst_img, map_matrix, dsize=(300,300))
    
    extract_face = contour.extract_face(src_face['face_id'], src_img_width, src_img_height, src_name)
    cv2.imshow('extract source image', extract_face)

    # merge 
    for x in xrange(src_img_width):
    	for y in xrange(src_img_height):
    		if sum(extract_face[y][x]) == 0:
    			continue
    		else:
    			# here we need to change the light of extract face
    			map_result[y][x] = extract_face[y][x]
    cv2.imshow('merge', map_result)

    imap_matrix = cv2.invertAffineTransform(map_matrix)
    print map_result.shape
    print imap_matrix
    final = cv2.warpAffine(map_result, imap_matrix, dsize=(dst_img.shape[0:2]))
    cv2.imwrite('final.png', final)
    cv2.waitKey(0)
def findRotMaxRect(data_in,
                   flag_opt=False,
                   flag_parallel=False,
                   nbre_angle=10,
                   flag_out=None,
                   flag_enlarge_img=False,
                   limit_image_size=300):
    '''
    flag_opt     : True only nbre_angle are tested between 90 and 180 
                        and a opt descent algo is run on the best fit
                   False 100 angle are tested from 90 to 180.
    flag_parallel: only valid when flag_opt=False. the 100 angle are run on multithreading
    flag_out     : angle and rectangle of the rotated image are output together with the rectangle of the original image
    flag_enlarge_img : the image used in the function is double of the size of the original to ensure all feature stay in when rotated
    limit_image_size : control the size numbre of pixel of the image use in the function. 
                       this speeds up the code but can give approximated results if the shape is not simple
    '''

    #time_s = datetime.datetime.now()

    #make the image square
    #----------------
    nx_in, ny_in = data_in.shape
    if nx_in != ny_in:
        n = max([nx_in, ny_in])
        data_square = np.ones([n, n])
        xshift = (n - nx_in) / 2
        yshift = (n - ny_in) / 2
        if yshift == 0:
            data_square[xshift:(xshift + nx_in), :] = data_in[:, :]
        else:
            data_square[:, yshift:(yshift + ny_in)] = data_in[:, :]
    else:
        xshift = 0
        yshift = 0
        data_square = data_in

    #apply scale factor if image bigger than limit_image_size
    #----------------
    if data_square.shape[0] > limit_image_size:
        data_small = cv2.resize(data_square,
                                (limit_image_size, limit_image_size),
                                interpolation=0)
        scale_factor = 1. * data_square.shape[0] / data_small.shape[0]
    else:
        data_small = data_square
        scale_factor = 1

    # set the input data with an odd number of point in each dimension to make rotation easier
    #----------------
    nx, ny = data_small.shape
    nx_extra = -nx
    ny_extra = -ny
    if nx % 2 == 0:
        nx += 1
        nx_extra = 1
    if ny % 2 == 0:
        ny += 1
        ny_extra = 1
    data_odd = np.ones([
        data_small.shape[0] + max([0, nx_extra]),
        data_small.shape[1] + max([0, ny_extra])
    ])
    data_odd[:-nx_extra, :-ny_extra] = data_small
    nx, ny = data_odd.shape

    nx_odd, ny_odd = data_odd.shape

    if flag_enlarge_img:
        data = np.zeros([2 * data_odd.shape[0] + 1, 2 * data_odd.shape[1] + 1
                         ]) + 1
        nx, ny = data.shape
        data[nx / 2 - nx_odd / 2:nx / 2 + nx_odd / 2,
             ny / 2 - ny_odd / 2:ny / 2 + ny_odd / 2] = data_odd
    else:
        data = np.copy(data_odd)
        nx, ny = data.shape

    #print (datetime.datetime.now()-time_s).total_seconds()

    if flag_opt:
        myranges_brute = ([
            (90., 180.),
        ])
        coeff0 = np.array([
            0.,
        ])
        coeff1 = optimize.brute(residual,
                                myranges_brute,
                                args=(data, ),
                                Ns=nbre_angle,
                                finish=None)
        popt = optimize.fmin(residual,
                             coeff1,
                             args=(data, ),
                             xtol=5,
                             ftol=1.e-5,
                             disp=False)
        angle_selected = popt[0]

        #rotation_angle = np.linspace(0,360,100+1)[:-1]
        #mm = [residual(aa,data) for aa in rotation_angle]
        #plt.plot(rotation_angle,mm)
        #plt.show()
        #pdb.set_trace()

    else:
        rotation_angle = np.linspace(90, 180, 100 + 1)[:-1]
        args_here = []
        for angle in rotation_angle:
            args_here.append([angle, data])

        if flag_parallel:

            # set up a pool to run the parallel processing
            cpus = multiprocessing.cpu_count()
            pool = multiprocessing.Pool(processes=cpus)

            # then the map method of pool actually does the parallelisation

            results = pool.map(residual_star, args_here)

            pool.close()
            pool.join()

        else:
            results = []
            for arg in args_here:
                results.append(residual_star(arg))

        argmin = np.array(results).argmin()
        angle_selected = args_here[argmin][0]
    rectangle, M_rect_max, RotData = get_rectangle_coord(angle_selected,
                                                         data,
                                                         flag_out=True)
    #rectangle, M_rect_max  = get_rectangle_coord(angle_selected,data)

    #print (datetime.datetime.now()-time_s).total_seconds()

    #invert rectangle
    M_invert = cv2.invertAffineTransform(M_rect_max)
    rect_coord = [
        rectangle[:2], [rectangle[0], rectangle[3]], rectangle[2:],
        [rectangle[2], rectangle[1]]
    ]

    #ax = plt.subplot(111)
    #ax.imshow(RotData.T,origin='lower',interpolation='nearest')
    #patch = patches.Polygon(rect_coord, edgecolor='k', facecolor='None', linewidth=2)
    #ax.add_patch(patch)
    #plt.show()

    rect_coord_ori = []
    for coord in rect_coord:
        rect_coord_ori.append(
            np.dot(M_invert, [coord[0], (ny - 1) - coord[1], 1]))

    #transform to numpy coord of input image
    coord_out = []
    for coord in rect_coord_ori:
        coord_out.append(    [ scale_factor*round(       coord[0]-(nx/2-nx_odd/2),0)-xshift,\
                               scale_factor*round((ny-1)-coord[1]-(ny/2-ny_odd/2),0)-yshift])

    coord_out_rot = []
    coord_out_rot_h = []
    for coord in rect_coord:
        coord_out_rot.append( [ scale_factor*round(       coord[0]-(nx/2-nx_odd/2),0)-xshift, \
                                scale_factor*round(       coord[1]-(ny/2-ny_odd/2),0)-yshift ])
        coord_out_rot_h.append( [ scale_factor*round(       coord[0]-(nx/2-nx_odd/2),0), \
                                  scale_factor*round(       coord[1]-(ny/2-ny_odd/2),0) ])

    #M = cv2.getRotationMatrix2D( ( (data_square.shape[0]-1)/2, (data_square.shape[1]-1)/2 ), angle_selected,1)
    #RotData = cv2.warpAffine(data_square,M,data_square.shape,flags=cv2.INTER_NEAREST,borderValue=1)
    #ax = plt.subplot(121)
    #ax.imshow(data_square.T,origin='lower',interpolation='nearest')
    #ax = plt.subplot(122)
    #ax.imshow(RotData.T,origin='lower',interpolation='nearest')
    #patch = patches.Polygon(coord_out_rot_h, edgecolor='k', facecolor='None', linewidth=2)
    #ax.add_patch(patch)
    #plt.show()

    #coord for data_in
    #----------------
    #print scale_factor, xshift, yshift
    #coord_out2 = []
    #for coord in coord_out:
    #    coord_out2.append([int(np.round(scale_factor*coord[0]-xshift,0)),int(np.round(scale_factor*coord[1]-yshift,0))])

    #print (datetime.datetime.now()-time_s).total_seconds()

    if flag_out is None:
        return coord_out
    elif flag_out == 'rotation':
        return coord_out, angle_selected, coord_out_rot
    else:
        print 'bad def in findRotMaxRect input. stop'
        pdb.set_trace()
Пример #25
0
    def apply_new_face(self, image, new_face, image_mask, mat, image_size, size):
        base_image = numpy.copy( image )
        new_image = numpy.copy( image )

        cv2.warpAffine( new_face, mat, image_size, new_image, cv2.WARP_INVERSE_MAP, cv2.BORDER_TRANSPARENT )

        outImage = None
        if self.seamless_clone:
            masky,maskx = cv2.transform( numpy.array([ size/2,size/2 ]).reshape(1,1,2) ,cv2.invertAffineTransform(mat) ).reshape(2).astype(int)
            outimage = cv2.seamlessClone(new_image.astype(numpy.uint8),base_image.astype(numpy.uint8),(image_mask*255).astype(numpy.uint8),(masky,maskx) , cv2.NORMAL_CLONE )
        else:
            foreground = cv2.multiply(image_mask, new_image.astype(float))
            background = cv2.multiply(1.0 - image_mask, base_image.astype(float))
            outimage = cv2.add(foreground, background)

        return outimage
Пример #26
0
def align_ecc(img,
              img_ref,
              method='ecc',
              mode='affine',
              coords=None,
              rescale=False,
              use_gradient=True):

    try:
        import cv2
    except ModuleNotFoundError:
        print('It seems OpenCV is not install. Please do so by running:'
              'pip install opencv-python-headless')

    if rescale:
        img0 = rescale_intensity(img_ref,
                                 in_range='image',
                                 out_range='float32').astype('float32')
        img1 = rescale_intensity(img, in_range='image',
                                 out_range='float32').astype('float32')
    else:
        img0 = img_ref.astype('float32')
        img1 = img.astype('float32')

    if use_gradient:

        def get_gradient(im):
            # Calculate the x and y gradients using Sobel operator
            grad_x = cv2.Sobel(im, cv2.CV_32F, 1, 0, ksize=1)
            grad_y = cv2.Sobel(im, cv2.CV_32F, 0, 1, ksize=1)

            # Combine the two gradients
            grad = cv2.addWeighted(np.absolute(grad_x), 0.5,
                                   np.absolute(grad_y), 0.5, 0)
            return grad

        img0 = get_gradient(img0)
        img1 = get_gradient(img1)

    shift = register_translation(img0, img1, 10)
    print('Found init shift: {}'.format(shift[0]))

    warp_matrix = np.eye(2, 3, dtype=np.float32)
    warp_matrix[:, 2] = -shift[0][::-1]
    # warp_matrix[:,2] = -shift[0]
    number_of_iterations = 1000000
    termination_eps = 1e-6
    ecc_mode = {
        'affine': cv2.MOTION_AFFINE,
        'translation': cv2.MOTION_TRANSLATION
    }
    criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
                number_of_iterations, termination_eps)
    # print(warp_matrix)
    (cc, warp_matrix) = cv2.findTransformECC(img0, img1, warp_matrix,
                                             ecc_mode[mode], criteria)
    # print(warp_matrix)
    img_x = cv2.warpAffine(img1, cv2.invertAffineTransform(warp_matrix),
                           img1.shape)
    imgref_x = cv2.warpAffine(img0, warp_matrix, img0.shape)

    # make a scikit-image/ndimage-compatible output transform matrix (y and x flipped!)
    trans_matrix = np.vstack((np.hstack(
        (np.rot90(warp_matrix[:2, :2],
                  2), np.flipud(warp_matrix[:, 2:]))), [0, 0, 1]))
    if coords is not None:
        coords_x = matrix_transform(coords, trans_matrix)
    else:
        coords_x = []

    return trans_matrix, coords_x, img_x, imgref_x
Пример #27
0
    def compare(self, pattern, images, settings):
        frame_height, frame_width = images[COLOR_IMAGE].shape[:2]
        frame_mask = np.zeros((frame_height, frame_width), np.uint8)
        pattern_height, pattern_width = pattern.image.shape[0:2]
        selected_split = settings.selected_split()
        points = selected_split.split(images) if selected_split else [
            (0, frame_height, 0, frame_width)
        ]
        for y1, y2, x1, x2 in points:
            pcb_gray = np.array(images[GRAY_IMAGE][y1:y2, x1:x2])
            pcb_bin = np.array(images[BIN_IMAGE][y1:y2, x1:x2])
            pcb_height, pcb_width = pcb_gray.shape[0:2]

            pcb_keypoints, pcb_descriptors = self.extract_key_points_and_descriptors(
                pcb_gray)
            matches = self.extract_matches(pattern.descriptors,
                                           pcb_descriptors)
            #img3 = cv2.drawMatches(pattern.image,pattern.keypoints,pcb_bin,pcb_keypoints,matches, flags=2, outImg = None)
            #plt.imshow(img3), plt.show()
            pattern_points = np.float32([
                pattern.keypoints[m.queryIdx].pt for m in matches
            ]).reshape(-1, 2)
            pcb_points = np.float32([
                pcb_keypoints[m.trainIdx].pt for m in matches
            ]).reshape(-1, 2)

            M_pcb_translate = np.float32([[1, 0, x1], [0, 1, y1]])
            M_pcb_to_pattern = self.ransac(pcb_points,
                                           pattern_points,
                                           iters=1000,
                                           maxerror=2)
            M_pattern_to_pcb = cv2.invertAffineTransform(M_pcb_to_pattern)
            M_xor_to_frame = self.add_affine_transform(M_pattern_to_pcb,
                                                       M_pcb_translate)

            transformed_pcb = cv2.warpAffine(pcb_bin, M_pcb_to_pattern,
                                             (pattern_width, pattern_height))
            _, transformed_pcb = cv2.threshold(transformed_pcb, 127, 255,
                                               cv2.THRESH_BINARY)
            #plt.subplot(1,3,1)
            #plt.title("Orig"), plt.imshow(pcb_bin, 'gray', interpolation='none')
            #plt.subplot(1,3,2)
            #plt.title("transformed_pcb"), plt.imshow(transformed_pcb, 'gray', interpolation='none')
            #plt.subplot(1,3,3)
            #plt.title("pattern"), plt.imshow(pattern.image, 'gray', interpolation='none'), plt.show()

            xor_img = cv2.bitwise_xor(transformed_pcb, pattern.image)
            frame_mask = cv2.bitwise_or(
                cv2.warpAffine(xor_img, M_xor_to_frame,
                               (frame_width, frame_height)), frame_mask)

        _, frame_mask = cv2.threshold(frame_mask, 127, 255, cv2.THRESH_BINARY)

        #plt.title("After xor"), plt.imshow(frame_mask, 'gray', interpolation='none'), plt.show()

        frame_mask = self.morphology_opening(frame_mask, (20, 20))
        #plt.title("After morphology"), plt.imshow(frame_mask, 'gray', interpolation='none'), plt.show()

        images[OUT_IMAGE] = BIN_IMAGE
        images[BIN_IMAGE] = frame_mask
        return images
Пример #28
0
    return np.array(selected_pts, dtype=np.float32)


show_img = np.copy(img)

src_pts = select_points(show_img, 3)
dst_pts = np.array([[0, 240], [0, 0], [240, 0]], dtype=np.float32)

affine_m = cv2.getAffineTransform(src_pts, dst_pts)
unwarped_img = cv2.warpAffine(img, affine_m, (240, 240))

cv2.imshow('result', np.hstack((show_img, unwarped_img)))
k = cv2.waitKey()
cv2.destroyAllWindows()

inv_affine = cv2.invertAffineTransform(affine_m)
warped_img = cv2.warpAffine(unwarped_img, inv_affine, (320, 240))
cv2.imshow('result', np.hstack((show_img, unwarped_img, warped_img)))
k = cv2.waitKey()
cv2.destroyAllWindows()

rotation_mat = cv2.getRotationMatrix2D(tuple(src_pts[0]), 6, 1)
rotated_img = cv2.warpAffine(img, rotation_mat, (240, 240))
cv2.imshow('result', np.hstack((show_img, rotated_img)))
k = cv2.waitKey()
cv2.destroyAllWindows()

show_img = np.copy(img)
src_pts = select_points(show_img, 4)
dst_pts = np.array([[0, 240], [0, 0], [240, 0], [240, 240]], dtype=np.float32)
perspective_m = cv2.getPerspectiveTransform(src_pts, dst_pts)
Пример #29
0
    #normalized_palm_detections = palm_detector.predict_on_image(img1)
    #palm_detections = denormalize_detections(normalized_palm_detections, scale, pad)
    #xc, yc, scale, theta = palm_detector.detection2roi(palm_detections.cpu())

    res = 256
    points1 = np.array([[0, 0, res - 1], [0, res - 1, 0]], dtype=np.float32).T
    affines = []
    imgs = []
    for i in range(points.shape[0]):
        pts = points[i, :, :3].cpu().numpy().T
        M = cv2.getAffineTransform(pts, points1)
        img = cv2.warpAffine(img1, M, (res, res))  #, borderValue=127.5)
        img = torch.tensor(img).to(gpu)
        imgs.append(img)

        affine = cv2.invertAffineTransform(M).astype('float32')
        affine = torch.tensor(affine).to(gpu)
        affines.append(affine)

    if imgs:
        imgs = torch.stack(
            imgs)  #.permute(0,3,1,2).float() / 255. #/ 127.5 - 1.0
        affines = torch.stack(affines)
    else:
        imgs = torch.zeros((0, 3, res, res)).to(gpu)
        affines = torch.zeros((0, 2, 3)).to(gpu)

    #img, affine2, box2 = hand_regressor.extract_roi(img1, xc, yc, theta, scale)
    flags2, handed2, normalized_landmarks2 = hand_regressor(imgs)
    landmarks2 = hand_regressor.denormalize_landmarks(normalized_landmarks2,
                                                      affines)
Пример #30
0
    def apply_new_face(self, image, new_face, image_mask, mat, image_size, size):
        base_image = numpy.copy( image )
        new_image = numpy.copy( image )

        cv2.warpAffine( new_face, mat, image_size, new_image, cv2.WARP_INVERSE_MAP, cv2.BORDER_TRANSPARENT )

        outImage = None
        if self.seamless_clone:
            masky,maskx = cv2.transform( numpy.array([ size/2,size/2 ]).reshape(1,1,2) ,cv2.invertAffineTransform(mat) ).reshape(2).astype(int)
            outimage = cv2.seamlessClone(new_image.astype(numpy.uint8),base_image.astype(numpy.uint8),(image_mask*255).astype(numpy.uint8),(masky,maskx) , cv2.NORMAL_CLONE )
        else:
            foreground = cv2.multiply(image_mask, new_image.astype(float))
            background = cv2.multiply(1.0 - image_mask, base_image.astype(float))
            outimage = cv2.add(foreground, background)

        return outimage
Пример #31
0
def rulerEndpoints(image_mask):
    """
    Find the ruler end points given an image mask
    image_mask: 8-bit single channel image_mask
    """
    image_height = image_mask.shape[0]

    image_mask = image_mask.astype(np.float64)
    image_mask /= 255.0

    # Find center of rotation of the mask
    moments = cv2.moments(image_mask)
    centroid_x = moments['m10'] / moments['m00']
    centroid_y = moments['m01'] / moments['m00']
    centroid = (centroid_x, centroid_y)

    # Find the transofrm to translate the image to the
    # center of the of the ruler
    center_y = image_mask.shape[0] / 2.0
    center_x = image_mask.shape[1] / 2.0
    center = (center_x, center_y)

    diff_x = center_x - centroid_x
    diff_y = center_y - centroid_y

    translation=np.array([[1,0,diff_x],
                         [0,1,diff_y],
                         [0,0,1]])

    min_moment = float('+inf')
    best = None
    best_angle = None
    for angle in np.linspace(-90,90,181):
        rotation = cv2.getRotationMatrix2D(centroid,
                                           float(angle),
                                           1.0)
        # Matrix needs bottom row added
        # Warning: cv2 dimensions are width, height not height, width!
        rotation = np.vstack([rotation, [0,0,1]])
        rt_matrix = np.matmul(translation,rotation)
        rotated = cv2.warpAffine(image_mask,
                                 rt_matrix[0:2],
                                 (image_mask.shape[1],
                                  image_mask.shape[0]))

        rotated_moments = cv2.moments(rotated)
        if rotated_moments['mu02'] < min_moment:
            best_angle = angle
            min_moment = rotated_moments['mu02']
            best = np.copy(rt_matrix)

    #Now that we have the best rotation, find the endpoints
    warped = cv2.warpAffine(image_mask,
                            best[0:2],
                            (image_mask.shape[1],
                             image_mask.shape[0]))

    # Reduce the image down to a 1d line and up convert to 64-bit
    # float between 0 and 1
    col_sum = cv2.reduce(warped,0, cv2.REDUCE_SUM).astype(np.float64)

    # Find the left/right of masked region in the line vector
    # Then, knowing its the center of the transformed image
    # back out the y coordinates in the actual image inversing
    # the transform above
    cumulative_sum = np.cumsum(col_sum[0])
    # Normalize the cumulative sum from 0 to 1
    max_sum=np.max(cumulative_sum)
    cumulative_sum /= max_sum

    # Find the left,right indices based on thresholds
    left_idx = np.searchsorted(cumulative_sum, 0.06, side='left')
    right_idx = np.searchsorted(cumulative_sum, 0.94, side='right')
    width = right_idx - left_idx

    # Add 10% of the ruler width
    left_idx = left_idx-(width*0.10)
    right_idx = right_idx+(width*0.10)

    endpoints=np.array([[[left_idx, image_height / 2],
                         [right_idx, image_height / 2]]])
    # Finally inverse the transform to get the actual y coordinates
    inverse = cv2.invertAffineTransform(best[0:2])
    inverse = np.vstack([inverse, [0,0,1]])
    return cv2.perspectiveTransform(endpoints, inverse)[0]
Пример #32
0
def crop_segmentation(mask, *others, width=512, height=512, extra_space=0.1):
    '''
    Crop using `mask` as input. `others` are optional arguments that will be croped using `mask`
    as reference.
    '''
    # Declare structure used in morphotology opening
    morph_structure = np.ones((11, 11))

    # Binarize mask
    mask_bin = np.squeeze(mask) > 0.5

    # Use morphology opening to reduce small structures detected.
    mask_bin = ndimage.morphology.binary_opening(mask_bin, morph_structure)

    mask_bin_labeled = measure.label(mask_bin, background=0)
    mask_bin = np.zeros_like(mask_bin)
    unique_values, counts = np.unique(mask_bin_labeled, return_counts=True)
    for i in np.argsort(counts)[-3:]:
        val = unique_values[i]
        if val == 0:
            continue
        mask_bin[mask_bin_labeled == val] = 1

    morph_structure = np.ones((22, 22))
    mask_bin = ndimage.morphology.binary_closing(mask_bin, morph_structure)


    # Squeeze horizontal and vertical dimention to find where mask begins and ends
    mask_bin_hor = mask_bin.any(axis=0)
    mask_bin_ver = mask_bin.any(axis=1)

    # Find index of first and last positive pixel
    xmin, xmax = np.argmax(mask_bin_hor), len(mask_bin_hor) - np.argmax(mask_bin_hor[::-1])
    ymin, ymax = np.argmax(mask_bin_ver), len(mask_bin_ver) - np.argmax(mask_bin_ver[::-1])

    # Add extra space
    xextra = int((xmax - xmin) * extra_space)
    yextra = int((ymax - ymin) * extra_space)
    xmin -= xextra
    xmax += xextra
    ymin -= yextra
    ymax += yextra

    # We will use affine transform to crop image. It will deal with padding image if necessary
    # Note: `pts` will follow a L shape: top left, bottom left and bottom right
    # For details see: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html#affine-transformation
    pts1 = np.float32([[xmin, ymin], [xmin, ymax], [xmax, ymax]])
    pts2 = np.float32([[0, 0], [0, height], [width, height]])
    M = cv2.getAffineTransform(pts1, pts2)

    # Crop mask
    mask_crop = cv2.warpAffine(mask_bin.astype(np.float), M, (height, width), flags=cv2.INTER_AREA, borderValue=0)

    M_inv = cv2.invertAffineTransform(M)
    inverse = lambda x: cv2.warpAffine(x, M_inv, (height, width))

    if len(others) > 0:
        # Crop others
        others_crop = tuple(
            cv2.warpAffine(np.squeeze(other), M, (height, width), flags=cv2.INTER_AREA, borderValue=0) for other in
            others)

        return (mask_crop,) + others_crop, inverse
    else:
        return mask_crop, inverse
Пример #33
0
    if (count == 19 or count == 95 or count == 125 or count == 175
            or count == 205 or count == 240):
        frame = cv2.imread(img)
        x, y, w, h = ROIs[count]
        rect = (x, y, w, h)
        color_template = frame[y:y + h, x:x + w]
        template = cv2.cvtColor(color_template, cv2.COLOR_BGR2GRAY)
        T = np.float32(template) / 255
        refPt = [[x, y], [x + w, y + h]]
        p = np.zeros(6)

    color_frame = cv2.imread(img)
    gray_frame = cv2.cvtColor(color_frame, cv2.COLOR_BGR2GRAY)
    I = np.float32(gray_frame) / 255
    p = InverseLK(I, T, parameters, refPt, p)
    warp_mat = np.array([[1 + p[0], p[2], p[4]], [p[1], 1 + p[3], p[5]]])
    warp_mat = cv2.invertAffineTransform(warp_mat)
    rectangle = [[rect[0], rect[1]], [rect[0] + w, rect[1]],
                 [rect[0] + w, rect[1] + h], [rect[0], rect[1] + h]]
    box = np.array(rectangle)
    box = box.T
    box = np.vstack((box, np.ones((1, 4))))
    pts = np.dot(warp_mat, box)
    pts = pts.T
    pts = pts.astype(np.int32)
    print(count)
    count += 1
    cv2.polylines(color_frame, [pts], True, (0, 255, 255), 2)
    cv2.imshow('Tracked Image', color_frame)
    cv2.waitKey(1)
Пример #34
0
def traks_obj_util(img, T, p, bb):
    W = get_W(p)
    # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # T = cv2.cvtColor(T, cv2.COLOR_BGR2GRAY)
    W = cv2.invertAffineTransform(W)

    I = cv2.warpAffine(img, W, (img.shape[1], img.shape[0]))

    # cv2.imshow("warped", im)
    # cv2.waitKey(0)
    # if cv2.waitKey(0) & 0xff == 27:
    # 	cv2.destroyAllWindows()
    # cv2.imshow("template", T)
    # if cv2.waitKey(0) & 0xff == 27:
    # 	cv2.destroyAllWindows()

    grad_x = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=3)
    grad_y = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=3)

    grad_x = cv2.warpAffine(grad_x, W, (grad_x.shape[1], grad_x.shape[0]))
    grad_y = cv2.warpAffine(grad_y, W, (grad_y.shape[1], grad_y.shape[0]))

    H = np.zeros((6, 6))
    for y in range(bb[0], bb[2], 1):
        for x in range(bb[1], bb[3], 1):
            del_W = np.asarray([[x, 0, y, 0, 1, 0], [0, x, 0, y, 0, 1]])
            grad = np.asarray([grad_x[y, x], grad_y[y, x]])
            # grad = [grad_x[y,x], grad_y[y,x]]
            # print(grad.shape)
            # print(del_W.shape)

            sd = np.matmul(grad, del_W)
            sd = np.reshape(sd, (1, 6))
            H_ = np.matmul(sd.transpose(), sd)
            H = H + H_

    H_inv = np.linalg.inv(H)

    temp = np.zeros((6, 1))
    for y in range(bb[0], bb[2], 1):
        for x in range(bb[1], bb[3], 1):
            del_W = np.asarray([[x, 0, y, 0, 1, 0], [0, x, 0, y, 0, 1]])
            # grad = [grad_x[y,x], grad_y[y,x]]
            grad = np.asarray([grad_x[y, x], grad_y[y, x]])

            sd = np.matmul(grad, del_W)
            sd = np.reshape(sd, (1, 6)).T

            e = T[y, x] - I[y, x]
            # e = I[y, x] - T[y, x]
            temp = temp + e * sd

    delta_p = np.matmul(H_inv, temp)

    e = 0
    for y in range(bb[0], bb[2], 1):
        for x in range(bb[1], bb[3], 1):
            # e = e + T[y, x] - I[y, x]
            e = e + (I[y, x] - T[y, x])**2

    # print("e: ", math.sqrt(e))
    # print("delta_p: ", delta_p)

    return delta_p, I, math.sqrt(e)
Пример #35
0
def generate_driver_card():
    ''' 批量生产虚拟驾驶证 '''
    # baseline = 2000000
    # ratio_width = 755 / 1133
    # ratio_height = 529 / 794

    # create font object with the font file and specify desired size
    font_song1 = ImageFont.truetype('./material/font/song1.ttf', size=48)
    font_song2 = ImageFont.truetype('./material/font/song2.ttf', size=45)
    font_song3 = ImageFont.truetype('./material/font/song3.ttf', size=44)
    font_id = ImageFont.truetype('./material/font/jishi4.ttf', size=36)
    font_birth = ImageFont.truetype('./material/font/jishi4.ttf', size=42)
    font_msyh = ImageFont.truetype('./material/font/msyh.ttf', size=45)
    font_xinshi = ImageFont.truetype('./material/font/xinshi.ttf', size=38)

    # font list
    print('load fonts...')
    font_song1_ls = [
        ImageFont.truetype('./material/font/song1.ttf', size=x)
        for x in range(46, 65)
    ]
    font_song3_ls = [
        ImageFont.truetype('./material/font/song3.ttf', size=x)
        for x in range(40, 49)
    ]
    font_id_ls = [
        ImageFont.truetype('./material/font/jishi4.ttf', size=x)
        for x in range(32, 41)
    ]
    font_birth_ls = [
        ImageFont.truetype('./material/font/jishi4.ttf', size=x)
        for x in range(34, 43)
    ]

    # other_fonts = []
    for f_ in os.listdir('./material/font/random_font'):
        fn_ = os.path.join('./material/font/random_font', f_)
        for x_ in range(32, 65):
            imfont = ImageFont.truetype(fn_, size=x_)
            if imfont is None:
                print('error font: ', 'fn')
                continue
            if 46 <= x_ <= 65:
                font_song1_ls.append(imfont)
            if 40 <= x_ <= 49:
                font_song3_ls.append(imfont)
            if 32 <= x_ <= 41:
                font_id_ls.append(imfont)
            if 34 <= x_ <= 43:
                font_birth_ls.append(imfont)

    X, Y = 0, 1
    BASE_POS, POS, FONT, FILL, TEXT, LABEL = 0, 1, 2, 3, 4, 5

    # 驾驶本基本数据,分别为:基础坐标、实际坐标、字体、颜色、文本、标注信息
    items = {
        'name': [(240, 240), [280, 240], font_song1_ls, (75, 75, 75), "王宏",
                 None],
        'id': [(477, 172), [477, 172], font_id_ls, (80, 80, 80),
               "374562876538274561", None],
        # 'class': [(608, 608), [608, 608], font_song3, (80, 80, 80), "C1", None],
        'birth': [(497, 452), [497, 452], font_birth_ls, (80, 80, 80),
                  "1990-08-08", None],
        'first': [(544, 524), [544, 524], font_birth_ls, (80, 80, 80),
                  "2016-10-23", None],
        'start': [(291, 680), [291, 680], font_birth_ls, (80, 80, 80),
                  "2016-10-23", None],
        'end': [(598, 680), [598, 680], font_birth_ls, (80, 80, 80),
                "2022-10-23", None],
        # address2 增加一列,用于处理过长地址
        'address2': [(220, 374), [220, 374], font_song3_ls, (80, 80, 80), "",
                     None],
        'address': [(220, 304), [220, 304], font_song3_ls, (80, 80, 80),
                    "重庆市渝北区龙景路158号", None],
    }

    # load template
    print('tempaltes load...')
    templatesName = []
    templateStrings = {}
    # template_width = 1133
    # template_height = 794
    for tem in os.listdir('./material/templates'):
        temFn = os.path.join('./material/templates', tem)
        if not os.path.isfile(temFn):
            continue
        templatesName.append(temFn)

    # load background
    bg_images = []
    if opt.background:
        print('load background images...')
        for f in os.listdir(opt.background_dir):
            fn = os.path.join(opt.background_dir, f)
            im_ = cv2.imread(fn)
            if im_ is not None:
                bg_images.append(im_)

    # load faker generator
    print('load fake generator...')
    fakeGen = FakeGanerator()

    imagesBatch = {'original': [], 'cut': []}
    labels = []  # label = [filename, [()]]

    for ep in range(opt.amount):
        if ((ep + 1) % 100 == 0):
            print("images {}/{}".format(ep + 1, opt.amount))

        # 其他固定文本的信息
        others = [
            ['title', [(235, 78), (900, 78), (900, 164), (235, 164)]],
            ['zhenghao', [(345, 170), (436, 170), (436, 210), (345, 210)]],
            ['name', [(85, 241), (160, 241), (160, 295), (85, 295)]],
            ['sex', [(536, 241), (602, 241), (602, 294), (536, 294)]],
            ['nationality', [(715, 241), (847, 241), (847, 298), (715, 298)]],
            ['china', [(849, 227), (940, 227), (940, 272), (849, 272)]],
            ['address', [(85, 310), (186, 310), (186, 368), (85, 368)]],
            ['birth', [(323, 451), (474, 451), (474, 508), (323, 508)]],
            ['first', [(322, 527), (531, 527), (531, 584), (322, 584)]],
            ['class', [(321, 605), (455, 605), (455, 658), (321, 658)]],
            ['period', [(95, 687), (239, 687), (239, 739), (95, 739)]],
            ['logo', [(68, 425), (324, 425), (324, 675), (68, 675)]],

            # 下面的文本会变化,根据模板不同作修改
            ['男', [(640, 228), (686, 228), (686, 273), (640, 273)]],
            ['C1', [(592, 602), (652, 602), (652, 643),
                    (592, 643)]]  # 出现A1B1这种4个字符的,y轴向两边分别扩充30个像素点
        ]

        # 是否加入随机扰动
        if opt.pbias:
            # v_bias 控制上下偏移
            h_bias = random.randint(-10, 10)
            v_bias = random.randint(-12, 12)
            for key, val in items.items():
                val[POS][X] = val[BASE_POS][X] + h_bias
                val[POS][Y] = val[BASE_POS][Y] + v_bias

        # 随机生成一个地址
        address = fakeGen.generate_address_c5(length=random.randint(15, 25))
        # 若地址长度大于18,则换行
        if len(address) > 18:
            items['address'][TEXT] = address[:18]
            items['address2'][TEXT] = address[18:]
        else:
            items['address'][TEXT] = address
            items['address2'][TEXT] = ''
        items['name'][TEXT] = fakeGen.generate_name() if ep % 2 else makeName()
        items['id'][TEXT] = fakeGen.generate_id()  # 生成有效身份证
        # items['class'][TEXT] = fakeGen.generate_class()
        # items['birth'][TEXT] = fakeGen.generate_date()
        birth = items['id'][TEXT][6:14]
        items['birth'][TEXT] = birth[:4] + '-' + birth[4:6] + '-' + birth[
            6:]  # 出生日期根据身份证id生成
        items['first'][TEXT] = fakeGen.generate_date()  # 第一次领证日期
        items['start'][TEXT] = items['first'][TEXT]  # 有效起始日期与第一次领证日期一致
        seed_end = random.randint(0, 9)
        if 0 <= seed_end < 7:
            items['end'][TEXT] = fakeGen.add_date_year(items['start'][TEXT],
                                                       random.choice([6, 10]))
        elif seed_end == 7:
            items['end'][TEXT] = '6年'
        elif seed_end == 8:
            items['end'][TEXT] = '10年'
        else:
            items['end'][TEXT] = '长期'

        # initialise the drawing context with the image object as background
        rd_filename = random.choice(templatesName)
        # 选择文件名称后,解析红章文本/性别/驾驶证类别
        tmp_fn = os.path.split(rd_filename)[-1]
        tmp_fn = os.path.splitext(tmp_fn)[0]
        org, cl, sex = tmp_fn.split('-')
        len_org = len(org)
        # 据统计,红章分行规则如下
        if len_org == 13:
            org_0, org_1, org_2 = org[:4], org[4:8], org[8:]  # 4,4,5
        elif len_org == 14:
            org_0, org_1, org_2 = org[:5], org[5:9], org[9:]  # 5,4,5
        elif len_org == 15:
            org_0, org_1, org_2 = org[:5], org[5:10], org[10:]  # 5,5,5
        elif len_org == 16:
            org_0, org_1, org_2 = org[:6], org[6:11], org[11:]  # 6,5,5
        elif len_org == 17:
            org_0, org_1, org_2 = org[:5], org[5:11], org[11:]  # 5,6,6
        elif len_org == 18:
            org_0, org_1, org_2 = org[:6], org[6:12], org[12:]  # 6,6,6
        elif len_org == 19:
            org_0, org_1, org_2 = org[:7], org[7:13], org[13:]  # 7,6,6
        elif len_org == 20:
            org_0, org_1, org_2 = org[:6], org[6:13], org[13:]  # 6,7,7
        elif len_org == 21:
            org_0, org_1, org_2 = org[:8], org[8:15], org[15:]  # 8,7,6
        else:
            print('红章换行规则解析错误: ', rd_filename)
            continue

        if rd_filename not in templateStrings:
            srcimage = Image.open(rd_filename)
            srcimage = srcimage.convert('RGB')
            srcimage = srcimage.resize((1133, 794), Image.BOX)

            buffered = BytesIO()
            srcimage.save(buffered, format="JPEG")
            img_encode = base64.b64encode(buffered.getvalue())
            image_string = BytesIO(base64.b64decode(img_encode))
            templateStrings[rd_filename] = image_string

        image = Image.open(templateStrings[rd_filename])
        draw = ImageDraw.Draw(image)

        # get random fill
        rd_fill = random.randint(-70, 50)
        new_fill = (80 + rd_fill, ) * 3
        # draw the text on the background
        for key, val in items.items():
            new_font = random.choice(val[FONT])  # random select a font
            if key == 'name':
                val[TEXT] = ' '.join(list(val[TEXT]))
            xy, mask = draw.text(val[POS],
                                 val[TEXT],
                                 fill=new_fill,
                                 font=new_font)
            x0, y0 = xy
            x1 = x0 + mask.size[0]
            y1 = y0 + mask.size[1]
            # x0, y0, x1, y1 = x0 - 5, y0 - 5, x1 + 5, y1 + 5
            val[LABEL] = (x0, y0, x1, y0, x1, y1, x0, y1)

        image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        if opt.background:
            bgImg = random.choice(bg_images)
            angle = random.randint(-4, 4)
            height, width = bgImg.shape[:2]
            M = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1)
            bgRotate = cv2.warpAffine(bgImg, M, (width, height))

            src_h, src_w = image.shape[:2]

            # 设计随机比例,将驾驶证图片嵌入背景图中
            ratio = random.randint(80, 95) / 100
            if width / height < src_w / src_h:  #
                target_w = int(width * ratio)
                target_h = int(src_h * target_w / src_w)
            else:
                target_h = int(height * ratio)
                target_w = int(src_w * target_h / src_h)
            x0 = (width - target_w) // 2
            y0 = (height - target_h) // 2
            x1 = x0 + target_w
            y1 = y0 + target_h

            if y0 <= 0 or y1 >= height:
                print('height out of range..')
                continue
            if x0 <= 0 or x1 >= width:
                print('width out of range..')
                continue

            inner = cv2.resize(image, (target_w, target_h))

            # resize后记录的标注信息也要跟着变
            for key, val in items.items():
                val[LABEL] = tuple(
                    [int(x * target_w / src_w) for x in val[LABEL]])
            for other in others:
                new_xy = []
                for x, y in other[1]:
                    new_xy.append(
                        (int(x * target_w / src_w), int(y * target_w / src_w)))
                other[1].clear()
                other[1].extend(new_xy)

            alpha_bg = 0.01 * random.randint(5, 35)
            alpha_dv = 1 - alpha_bg
            bgRotate[y0:y1, x0:x1, :] = (alpha_bg * bgRotate[y0:y1, x0:x1, :] +
                                         alpha_dv * inner[:, :, :])
            image = bgRotate
            # 计算原来标注位置在新图片中的绝对位置
            for key, val in items.items():
                new_pos = []
                for i, v in enumerate(val[LABEL]):
                    if i % 2:
                        new_pos.append(y0 + v)
                    else:
                        new_pos.append(x0 + v)
                val[LABEL] = tuple(new_pos)

            for other in others:
                new_xy = []
                for x, y in other[1]:
                    new_xy.append((x + x0, y + y0))
                other[1].clear()
                other[1].extend(new_xy)

            if opt.salt:  # 椒盐噪声
                if 1 == random.randint(0, 3):
                    image = img_salt_pepper_noise(image, 0.005)

            if opt.blur and image.shape[0] > 500 and image.shape[1] > 500:
                seed = random.choice((0, 3, 5))
                if seed:
                    # 随机选择滤波方式
                    blur_method = random.choice(
                        [cv2.GaussianBlur, cv2.blur, cv2.medianBlur])
                    if blur_method is cv2.bilateralFilter:
                        image = blur_method(image, -1, random.randint(20, 200),
                                            random.randint(20, 200))
                    elif blur_method is cv2.GaussianBlur:
                        image = blur_method(image, (seed, seed), 0)
                    elif blur_method is cv2.blur:
                        image = blur_method(image, (seed, seed))
                    else:
                        image = blur_method(image, seed)

            if opt.perspective:
                ps = [(x0, y0), (x1, y0), (x1, y1), (x0, y1)]
                pM = get_perspective_matrix(image, ps)
                image = cv2.warpPerspective(image, pM, (width, height))

                # 透视变换后,标注坐标也要变化
                for key, val in items.items():
                    ps = val[LABEL]
                    old_points = [(ps[i], ps[i + 1]) for i in range(0, 8, 2)]
                    old_points = np.array(old_points, dtype='float32')
                    old_points = np.array([old_points])
                    new_points = cv2.perspectiveTransform(old_points, pM)

                    points_by_warp = []
                    for i in range(4):
                        points_by_warp.append(int(new_points[0][i][0]))
                        points_by_warp.append(int(new_points[0][i][1]))
                    val[LABEL] = tuple(points_by_warp)

                for other in others:
                    old_points = np.array(other[1], dtype='float32')
                    old_points = np.array([old_points])
                    new_points = cv2.perspectiveTransform(old_points, pM)

                    new_xy = []
                    for i in range(4):
                        new_xy.append((int(new_points[0][i][0]),
                                       int(new_points[0][i][1])))
                    other[1].clear()
                    other[1].extend(new_xy)

            invM = cv2.invertAffineTransform(M)
            image = cv2.warpAffine(image, invM, (width, height))

            # 仿射变换后标注坐标点也要跟着变换
            for key, val in items.items():
                ps = val[LABEL]
                old_points = [(ps[i], ps[i + 1]) for i in range(0, 8, 2)]
                old_points = np.array(old_points, dtype=np.int32)
                old_points = np.reshape(old_points, (4, 1, 2))
                new_points = cv2.transform(old_points, invM)

                points_by_warp = []
                for i in range(4):
                    points_by_warp.append(new_points[i][0][0])
                    points_by_warp.append(new_points[i][0][1])
                val[LABEL] = tuple(points_by_warp)

            for other in others:
                # old_points = list(other[1])
                old_points = np.array(other[1], dtype=np.int32)
                old_points = np.reshape(old_points, (4, 1, 2))
                new_points = cv2.transform(old_points, invM)

                new_xy = []
                for i in range(4):
                    new_xy.append((new_points[i][0][0], new_points[i][0][1]))
                other[1].clear()
                other[1].extend(new_xy)

        if opt.redbox:
            for key, val in items.items():
                points = val[LABEL]
                x0, y0, x1, y1, x2, y2, x3, y3 = points
                # x, y, w, h = cv2.boundingRect([(x0,y0), (x1,y1), (x2,y2), (x3,y3)])
                x_min = min(x0, x1, x2, x3)
                x_max = max(x0, x1, x2, x3)
                y_min = min(y0, y1, y2, y3)
                y_max = max(y0, y1, y2, y3)
                cv2.rectangle(image, (x_min, y_min), (x_max, y_max),
                              (0, 0, 255), 2)

            for i, other in enumerate(others):
                # ["中华人民共和国机动车驾驶证", [(234,75), (900,75), (900,134), (234,134)]],
                (x0, y0), (x1, y1), (x2, y2), (x3, y3) = other[1]
                if len(others) - 1 == i:
                    temp_fn = os.path.split(rd_filename)[-1]
                    temp_fn = os.path.splitext(temp_fn)[0]
                    try:
                        origanization, cl, sex = temp_fn.split('-')
                    except Exception as e:
                        print(str(e))
                        print(temp_fn)
                    if len(cl) > 2:
                        x0 = x3 = x0 - 30
                        x1 = x2 = x1 + 30
                x_min = min(x0, x1, x2, x3)
                x_max = max(x0, x1, x2, x3)
                y_min = min(y0, y1, y2, y3)
                y_max = max(y0, y1, y2, y3)
                cv2.rectangle(image, (x_min, y_min), (x_max, y_max),
                              (0, 0, 255), 2)

        if opt.image:
            filename = '%s.jpg' % (BASELINE + ep)
            originalFilename = os.path.join(opt.output, 'original', filename)
            imagesBatch['original'].append((image, originalFilename))

            # 在保存原图的情况下,如果选择了保存标注信息,则在此处控制保存
            if opt.label:
                text_label = []
                fn = '%s.txt' % (BASELINE + ep)
                for key, val in items.items():
                    if key == 'address2':
                        if not val[TEXT]:  # 地址栏第二栏如果没有数据,则跳过
                            continue
                    x0, y0, x1, y1, x2, y2, x3, y3 = val[LABEL]
                    x_min = str(int(min(x0, x1, x2, x3)))
                    x_max = str(int(max(x0, x1, x2, x3)))
                    y_min = str(int(min(y0, y1, y2, y3)))
                    y_max = str(int(max(y0, y1, y2, y3)))
                    # here
                    if key == 'id':
                        text_label.append(','.join(
                            (x_min, y_min, x_max, y_max, 'id', fn)))
                    elif key in ['birth', 'first', 'start', 'end']:
                        text_label.append(','.join(
                            (x_min, y_min, x_max, y_max, 'date', fn)))
                    # text_label.append(','.join(list(map(str,val[LABEL]))) + ',' + val[TEXT])
                for idx, other in enumerate(others[:-2]):
                    (x0, y0), (x1, y1), (x2, y2), (x3, y3) = other[1]
                    x_min = str(int(min(x0, x1, x2, x3)))
                    x_max = str(int(max(x0, x1, x2, x3)))
                    y_min = str(int(min(y0, y1, y2, y3)))
                    y_max = str(int(max(y0, y1, y2, y3)))
                    # here
                    text_label.append(','.join(
                        (x_min, y_min, x_max, y_max, other[0], fn)))
                label = '\n'.join(text_label)
                txtFilename = os.path.join(opt.output, 'labels', fn)
                labels.append((label, txtFilename))

        # 图片量达到saveInterval设定值后,一次性保存
        for key in ['original', 'cut']:
            if len(imagesBatch[key]) >= opt.saveInterval:
                for img, fn in imagesBatch[key]:
                    encode_param = [
                        int(cv2.IMWRITE_JPEG_QUALITY),
                        random.randint(50, 90)
                    ]
                    try:
                        # img = adjust_contast_brightness(img)
                        # img = img_salt_pepper_noise(img, 0.01)
                        cv2.imencode('.jpg', img, encode_param)[1].tofile(fn)
                        # cv2.imwrite(fn, img)
                    except Exception as e:
                        print('error: ', fn)
                imagesBatch[key].clear()
        # 标注图片数达到saveInterval设定值后,一次性保存txt标注文件
        if len(labels) >= opt.saveInterval:
            for label, fn in labels:
                try:
                    with open(fn, 'w', encoding='utf-8') as f:
                        f.write(label)
                except Exception as e:
                    print('write txt error : ', fn)
            labels.clear()

    # 保存剩余图片
    for key in ['original', 'cut']:
        if len(imagesBatch[key]):
            for img, fn in imagesBatch[key]:
                encode_param = [
                    int(cv2.IMWRITE_JPEG_QUALITY),
                    random.randint(50, 90)
                ]
                try:
                    # img = adjust_contast_brightness(img)
                    # img = img_salt_pepper_noise(img, 0.01)
                    cv2.imencode('.jpg', img, encode_param)[1].tofile(fn)
                    # cv2.imwrite(fn, img)
                except Exception as e:
                    print('error: ', fn)
                if key == 'original' and opt.label:
                    txt_name = os.path.splitext(fn)[0] + '.txt'
            imagesBatch[key].clear()

    if len(labels):
        for label, fn in labels:
            try:
                with open(fn, 'w', encoding='utf-8') as f:
                    f.write(label)
            except Exception as e:
                print('write txt error : ', fn)
        labels.clear()

    print('Finished!')
Пример #36
0
def rotate_landmarks(face, rotation_matrix):
    """ Rotates the 68 point landmarks and detection bounding box around the given rotation matrix.

    Paramaters
    ----------
    face: DetectedFace or dict
        A :class:`DetectedFace` or an `alignments file` ``dict`` containing the 68 point landmarks
        and the `x`, `w`, `y`, `h` detection bounding box points.
    rotation_matrix: numpy.ndarray
        The rotation matrix to rotate the given object by.

    Returns
    -------
    DetectedFace or dict
        The rotated :class:`DetectedFace` or `alignments file` ``dict`` with the landmarks and
        detection bounding box points rotated by the given matrix. The return type is the same as
        the input type for ``face``
    """
    logger.trace("Rotating landmarks: (rotation_matrix: %s, type(face): %s",
                 rotation_matrix, type(face))
    rotated_landmarks = None
    # Detected Face Object
    if isinstance(face, DetectedFace):
        bounding_box = [[face.x, face.y], [face.x + face.w, face.y],
                        [face.x + face.w, face.y + face.h],
                        [face.x, face.y + face.h]]
        landmarks = face.landmarks_xy

    # Alignments Dict
    elif isinstance(face, dict) and "x" in face:
        bounding_box = [
            [face.get("x", 0), face.get("y", 0)],
            [face.get("x", 0) + face.get("w", 0),
             face.get("y", 0)],
            [
                face.get("x", 0) + face.get("w", 0),
                face.get("y", 0) + face.get("h", 0)
            ], [face.get("x", 0),
                face.get("y", 0) + face.get("h", 0)]
        ]
        landmarks = face.get("landmarks_xy", list())

    else:
        raise ValueError("Unsupported face type")

    logger.trace("Original landmarks: %s", landmarks)

    rotation_matrix = cv2.invertAffineTransform(rotation_matrix)
    rotated = list()
    for item in (bounding_box, landmarks):
        if not item:
            continue
        points = np.array(item, np.int32)
        points = np.expand_dims(points, axis=0)
        transformed = cv2.transform(points, rotation_matrix).astype(np.int32)
        rotated.append(transformed.squeeze())

    # Bounding box should follow x, y planes, so get min/max
    # for non-90 degree rotations
    pt_x = min([pnt[0] for pnt in rotated[0]])
    pt_y = min([pnt[1] for pnt in rotated[0]])
    pt_x1 = max([pnt[0] for pnt in rotated[0]])
    pt_y1 = max([pnt[1] for pnt in rotated[0]])
    width = pt_x1 - pt_x
    height = pt_y1 - pt_y

    if isinstance(face, DetectedFace):
        face.x = int(pt_x)
        face.y = int(pt_y)
        face.w = int(width)
        face.h = int(height)
        face.r = 0
        if len(rotated) > 1:
            rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
            face.landmarks_xy = rotated_landmarks
    else:
        face["left"] = int(pt_x)
        face["top"] = int(pt_y)
        face["right"] = int(pt_x1)
        face["bottom"] = int(pt_y1)
        rotated_landmarks = face

    logger.trace("Rotated landmarks: %s", rotated_landmarks)
    return face
# load the input image, resize it, and convert it to grayscale

gray = cv2.cvtColor(img_original_resize, cv2.COLOR_BGR2GRAY)
# show the original input image and detect faces in the grayscale
# image
rects = detector(gray, 2)

faceAligned, m_affine, (w_affine_orig,
                        h_affine_orig) = fa.align(img_original_resize, gray,
                                                  rects[0])
cv2.namedWindow("orig_aligned",
                cv2.WINDOW_NORMAL)  # Create window with freedom of dimensions
cv2.imshow("orig_aligned", faceAligned)

m_affine_inverse = cv2.invertAffineTransform(m_affine).copy()

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# show the original input image and detect faces in the grayscale
# image
rects = detector(gray, 2)

faceAligned, m_affine, (w_affine, h_affine) = fa.align(img, gray, rects[0])
cv2.namedWindow("out_aligned",
                cv2.WINDOW_NORMAL)  # Create window with freedom of dimensions
cv2.imshow("out_aligned", faceAligned)

output_realigned = cv2.warpAffine(img,
                                  m_affine, (w_affine, h_affine),
                                  flags=cv2.INTER_CUBIC)
output_realigned = cv2.warpAffine(output_realigned,
Пример #38
0
def main():
    # Note: Comment out parts of this code as necessary

    kernel1D = cv2.getGaussianKernel(3, 7)
    kernel = kernel1D * np.transpose(kernel1D)
    #kernel = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])

    # 1a
    transA, transA_Ix, transA_Iy,transA_pair = get_image_gradients_paired("transA.jpg")
    norm_and_write_image(transA_pair, "ps5-1-a-1.png")

    # TODO: Similarly for simA.jpg
    simA, simA_Ix, simA_Iy,simA_pair = get_image_gradients_paired("simA.jpg")
    norm_and_write_image(simA_pair, "ps5-1-a-2.png")

    # # 1b
    transA_R = harris_response(transA_Ix, transA_Iy, kernel, 0.02)
    norm_and_write_image(transA_R, "ps5-1-b-1.png")

    transB, transB_Ix, transB_Iy,transB_pair = get_image_gradients_paired("transB.jpg")
    transB_R = harris_response(transB_Ix, transB_Iy, kernel, 0.02)
    norm_and_write_image(transB_R, "ps5-1-b-2.png")


    simA_R = harris_response(simA_Ix, simA_Iy, kernel, 0.02)
    norm_and_write_image(simA_R, "ps5-1-b-3.png")


    simB, simB_Ix, simB_Iy,simB_pair = get_image_gradients_paired("simB.jpg")
    simB_R = harris_response(simB_Ix, simB_Iy, kernel, 0.02)
    norm_and_write_image(simB_R, "ps5-1-b-4.png")


    # 1c
    transA_corners = find_corners(transA_R, 50, 10)
    print "transA corners " + str(len(transA_corners))
    transA_out = draw_corners(transA, transA_corners)
    norm_and_write_image(transA_out, "ps5-1-c-1.png")

    transB_corners = find_corners(transB_R, 50, 10)
    print "transB corners " + str(len(transB_corners))
    transB_out = draw_corners(transB, transB_corners)
    norm_and_write_image(transB_out, "ps5-1-c-2.png")

    simA_corners = find_corners(simA_R, 40, 5)
    print "simA corners " + str(len(simA_corners))

    simA_out = draw_corners(simA, simA_corners)
    norm_and_write_image(simA_out, "ps5-1-c-3.png")

    simB_corners = find_corners(simB_R, 40, 5)
    print "simB corners " + str(len(simB_corners))

    simB_out = draw_corners(simB, simB_corners)
    norm_and_write_image(simB_out, "ps5-1-c-4.png")



    # # 2a
    transA_angle = gradient_angle(transA_Ix, transA_Iy)
    transA_kp = get_keypoints(transA_corners, transA_R, transA_angle, _size=10.0, _octave=0)
    transA = cv2.imread(os.path.join(input_dir, "transA.jpg"), cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    transA_out = cv2.drawKeypoints(transA, transA_kp,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    transB_angle = gradient_angle(transB_Ix, transB_Iy)
    transB_kp = get_keypoints(transB_corners, transB_R, transB_angle, _size=10.0, _octave=0)
    transB = cv2.imread(os.path.join(input_dir, "transB.jpg"), cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    transB_out = cv2.drawKeypoints(transB, transB_kp,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    trans_paired = make_image_pair(transA_out, transB_out)
    write_image(trans_paired, "ps5-2-a-1.png")


    simA_angle = gradient_angle(simA_Ix, simA_Iy)
    simA_kp = get_keypoints(simA_corners, simA_R, simA_angle, _size=10.0, _octave=0)
    simA = cv2.imread(os.path.join(input_dir, "simA.jpg"), cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    simA_out = cv2.drawKeypoints(simA, simA_kp,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    simB_angle = gradient_angle(simB_Ix, simB_Iy)
    simB_kp = get_keypoints(simB_corners, simB_R, simB_angle, _size=10.0, _octave=0)
    simB = cv2.imread(os.path.join(input_dir, "simB.jpg"), cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    simB_out = cv2.drawKeypoints(simB, simB_kp,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    sim_paired = make_image_pair(simA_out, simB_out)
    write_image(sim_paired, "ps5-2-a-2.png")

    # TODO: Ditto for (simA, simB) pair

    # 2b
    transA_desc = get_descriptors(transA, transA_kp)
    transB_desc = get_descriptors(transB, transB_kp)
    trans_matches = match_descriptors(transA_desc, transB_desc)
    # print trans_matches
    trans_matched = draw_matches(transA, transB, transA_kp, transB_kp, trans_matches)
    write_image(trans_matched, "ps5-2-b-1.png")

    simA_desc = get_descriptors(simA, simA_kp)
    simB_desc = get_descriptors(simB, simB_kp)
    sim_matches = match_descriptors(simA_desc, simB_desc)
    sim_matched = draw_matches(simA, simB, simA_kp, simB_kp, sim_matches)
    write_image(sim_matched, "ps5-2-b-2.png")

     # 3a
    # TODO: Compute translation vector using RANSAC for (transA, transB) pair, draw biggest consensus set
    translation, matchSets = compute_translation_RANSAC(transA_kp, transB_kp, trans_matches, 20)
    print "translation"
    print translation
    print len(trans_matches)
    print len(matchSets)
    ransac_trans_match = draw_matches(transA, transB, transA_kp, transB_kp, matchSets)
    write_image(ransac_trans_match, "ps5-3-a-1.png")

    # 3b
    # TODO: Compute similarity transform for (simA, simB) pair, draw biggest consensus set
    sim_matrix, matchSets = compute_similarity_RANSAC(simA_kp, simB_kp, sim_matches, 10, 20)
    print "sim matrix"
    print sim_matrix
    print len(sim_matches)
    print len(matchSets)
    ransac_sim_match = draw_matches(simA, simB, simA_kp, simB_kp, matchSets)
    write_image(ransac_sim_match, "ps5-3-b-1.png")
    # # Extra credit: 3c, 3d, 3e


    #3c
    affine_matrix, matchSets = compute_affine_RANSAC(simA_kp, simB_kp, sim_matches, 10, 14)
    print "affine matrix"
    print affine_matrix
    print len(sim_matches)
    print len(matchSets)
    ransac_sim_match = draw_matches(simA, simB, simA_kp, simB_kp, matchSets)
    write_image(ransac_sim_match, "ps5-3-c-2.png")

    #3d

    # sim_matrix = np.array([[0.94355048,  -0.33337659,  56.75110304],
    #                        [0.33337659,   0.94355048, -67.81053724]])
    # simB = cv2.imread(os.path.join(input_dir, "simB.jpg"), cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    # simA = cv2.imread(os.path.join(input_dir, "simA.jpg"), cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    rand = np.zeros((simB.shape[0], simB.shape[1]))
    out_warp  = cv2.invertAffineTransform(sim_matrix)
    warped_image = cv2.warpAffine(simB.astype(np.uint8),out_warp, (simB.shape[1], simB.shape[0]), flags=cv2.INTER_LINEAR)
    write_image(warped_image, "ps5-3-d-1.png")
    merged = cv2.merge((rand.astype(np.uint8),warped_image.astype(np.uint8),simA.astype(np.uint8)))
    write_image(merged, "ps5-3-d-2.png")


    out_warp  = cv2.invertAffineTransform(affine_matrix)

    warped_image = cv2.warpAffine(simB.astype(np.uint8),out_warp, (simB.shape[1], simB.shape[0]), flags=cv2.INTER_LINEAR)
    write_image(warped_image, "ps5-3-e-1.png")
    merged = cv2.merge((rand.astype(np.uint8),warped_image.astype(np.uint8),simA.astype(np.uint8)))
    write_image(merged, "ps5-3-e-2.png")
Пример #39
0
def SimulateAffineMap(zoom_step,
                      psi,
                      t1_step,
                      phi,
                      img0,
                      mask=None,
                      CenteredAt=None,
                      t2_step=1.0,
                      inter_flag=cv2.INTER_CUBIC,
                      border_flag=cv2.BORDER_CONSTANT,
                      SimuBlur=True):
    '''
    Computing affine deformations of images as in [https://rdguez-mariano.github.io/pages/imas]
    Let A = R_psi0 * diag(t1,t2) * R_phi0    with t1>t2
          = lambda * R_psi0 * diag(t1/t2,1) * R_phi0

    Parameters given should be as:
    zoom_step = 1/lambda
    t1_step = 1/t1
    t2_step = 1/t2
    psi = -psi0 (in degrees)
    phi = -phi0 (in degrees)

    ASIFT proposed params:
    inter_flag = cv2.INTER_LINEAR
    SimuBlur = True

    Also, another kind of exterior could be:
    border_flag = cv2.BORDER_REPLICATE
    '''

    tx = zoom_step * t1_step
    ty = zoom_step * t2_step
    assert tx >= 1 and ty >= 1, 'Either scale or t are defining a zoom-in operation. If you want to zoom-in do it manually. tx = ' + str(
        tx) + ', ty = ' + str(ty)

    img = img0.copy()
    arr = []
    DoCenter = False
    if type(CenteredAt) is list:
        DoCenter = True
        arr = np.array(CenteredAt).reshape(-1, 2)

    h, w = img.shape[:2]
    tcorners = SquareOrderedPts(h, w, CV=False)
    if mask is None:
        mask = np.zeros((h, w), np.uint8)
        mask[:] = 255
    A1 = np.float32([[1, 0, 0], [0, 1, 0]])

    if phi != 0.0:
        phi = np.deg2rad(phi)
        s, c = np.sin(phi), np.cos(phi)
        A1 = np.float32([[c, -s], [s, c]])
        tcorners = np.dot(tcorners, A1.T)
        x, y, w, h = cv2.boundingRect(np.int32(tcorners).reshape(1, -1, 2))
        A1 = np.hstack([A1, [[-x], [-y]]])
        if DoCenter and tx == 1.0 and ty == 1.0 and psi == 0.0:
            arr = AffineArrayCoor(arr, A1)[0].ravel()
            h0, w0 = img0.shape[:2]
            A1[0][2] += h0 / 2.0 - arr[0]
            A1[1][2] += w0 / 2.0 - arr[1]
            w, h = w0, h0
            img = cv2.warpAffine(img,
                                 A1, (w, h),
                                 flags=inter_flag,
                                 borderMode=border_flag)
        else:
            img = cv2.warpAffine(img,
                                 A1, (w, h),
                                 flags=inter_flag,
                                 borderMode=border_flag)

    h, w = img.shape[:2]
    A2 = np.float32([[1, 0, 0], [0, 1, 0]])
    tcorners = SquareOrderedPts(h, w, CV=False)
    if tx != 1.0 or ty != 1.0:
        sx = 0.8 * np.sqrt(tx * tx - 1)
        sy = 0.8 * np.sqrt(ty * ty - 1)
        if SimuBlur:
            img = cv2.GaussianBlur(img, (0, 0), sigmaX=sx, sigmaY=sy)
        A2[0] /= tx
        A2[1] /= ty

    if psi != 0.0:
        psi = np.deg2rad(psi)
        s, c = np.sin(psi), np.cos(psi)
        Apsi = np.float32([[c, -s], [s, c]])
        Apsi = np.matmul(Apsi, A2[0:2, 0:2])
        tcorners = np.dot(tcorners, Apsi.T)
        x, y, w, h = cv2.boundingRect(np.int32(tcorners).reshape(1, -1, 2))
        A2[0:2, 0:2] = Apsi
        A2[0][2] -= x
        A2[1][2] -= y

    if tx != 1.0 or ty != 1.0 or psi != 0.0:
        if DoCenter:
            A = ComposeAffineMaps(A2, A1)
            arr = AffineArrayCoor(arr, A)[0].ravel()
            h0, w0 = img0.shape[:2]
            A2[0][2] += h0 / 2.0 - arr[0]
            A2[1][2] += w0 / 2.0 - arr[1]
            w, h = w0, h0
        img = cv2.warpAffine(img,
                             A2, (w, h),
                             flags=inter_flag,
                             borderMode=border_flag)

    A = ComposeAffineMaps(A2, A1)

    if psi != 0 or phi != 0.0 or tx != 1.0 or ty != 1.0:
        if DoCenter:
            h, w = img0.shape[:2]
        else:
            h, w = img.shape[:2]
        mask = cv2.warpAffine(mask, A, (w, h), flags=inter_flag)
    Ai = cv2.invertAffineTransform(A)
    return img, mask, A, Ai
Пример #40
0
    def detectWithAngles(self, img, angels = None, resolve = True, thr = None ):
        '''
        angles - a list of angles to test. If None, default to the value created at the constructor (which defaults to [0])
        resolve - a boolean flag, whether or not to cluster the boxes, and resolve cluster by highest score.
        thr - the maximum area covered with objects, before we break from the angles loop
        
        returns - a list of CascadeResult() objects
        '''
        
        if thr == None:
            thr = self.thr
            
        original_size = img.shape[0] * img.shape[0]
        if angels == None:
            angels = self.angles
            
        results = []
        total_area = 0
        for angle in angels:

            # the diagonal of the image is the diameter of the rotated image, so the big_image needs to bound this circle
            # by being that big

            big_image, x_shift, y_shift, diag, rot_center = pad_image_for_rotation(img)
            
            # find the rotation and the inverse rotation matrix, to allow translations between old and new coordinates and vice versa
            rot_mat = cv2.getRotationMatrix2D(rot_center, angle, scale = 1.0)
            inv_rot_mat = cv2.invertAffineTransform(rot_mat)
            
            # rotate the image by the desired angle
            rot_image = cv2.warpAffine(big_image, rot_mat, (big_image.shape[1],big_image.shape[0]), flags=cv2.INTER_CUBIC)
            faces = self.detectMultiScaleWithScores(rot_image, scaleFactor = 1.03, minNeighbors = 20, minSize = (15,15), flags = 4)
            for face in faces:
                xp = face[0]
                dx = face[2]
                yp = face[1]
                dy = face[3]
                score = 1
                dots = np.matrix([[xp,xp+dx,xp+dx,xp], [yp,yp,yp+dy,yp+dy], [1, 1, 1, 1]])
                # these are the original coordinates in the "big_image"
#                print dots
                originals_in_big = inv_rot_mat * dots
#                print originals_in_big
                shifter = np.matrix([[x_shift]*4, [y_shift]*4])
#                print shifter
                # these are the original coordinate in the original image
                originals = originals_in_big - shifter
#                print originals
                points = np.array(originals.transpose())
                x = points[0,0]
                y = points[0,1]
                box_with_score = ([x,y,dx,dy], score)
                
                cascade_result = CascadeResult.from_polygon_points(points, score, self.cascade_type)
#                print cascade_result
                
                results.append(cascade_result)
            
            #################
            # test and see, if we found enough objects, break out and don't waste our time
                total_area += cascade_result.area     
            
        if resolve:
            return resolve_angles(results, width = img.shape[1], height = img.shape[0])
        else:
            return results
Пример #41
0
def stitch_chunks(src_mf, trg_mf, \
        patch_size, \
        coarse_scale, fine_scale, \
        initial_estimate, \
        search_space, \
        mls_alpha=3.):
    (shift_space, d_shift), \
            (angle_space, d_angle), \
            (scale_space, d_scale) = search_space
    def norm(data):
        with np.errstate(invalid='ignore'):
            return (data - np.mean(data)) / np.std(data)

    def get_patch_at(img, pos, patch_size):
        x, y = pos
        t = np.array([[1., 0., patch_size - x], \
                      [0., 1., patch_size - y]], 'float32')
        patch = cv2.warpAffine(img, t, \
                (int(2 * patch_size + .5), int(2 * patch_size + .5)))
        return norm(patch)
    
    # Estimate initial affine transform
    src_mask = cuttlefish_mask(src_mf)
    trg_mask = cuttlefish_mask(trg_mf)
    try:
        t0, t1 = estimate_affine(src_mask, trg_mask, mode=initial_estimate)
    except RuntimeError:
        return None
    t0_inv = cv2.invertAffineTransform(t0)
    t1_inv = cv2.invertAffineTransform(t1)
    
    # Coarse grid
    coarse_grid = np.mgrid[tuple(np.s_[: s : coarse_scale] \
                                 for s in trg_mf.shape)]
    coarse_point_in_mask = trg_mask[coarse_grid[0], coarse_grid[1]]
    coarse_trg_coords = np.float32(coarse_grid[:, coarse_point_in_mask] \
            .T[:, ::-1])

    def coarse_alignment(t_inv):
        t_ide = np.identity(3, 'float32')[: 2]

        coarse_src_coords = cv2.transform( \
                coarse_trg_coords[:, None], t_inv)[:, 0]

        # Transform target for coarse grid search
        shape = tuple(int(s / d_shift) for s in src_mf.shape)
        trg_mf_t = cv2.warpAffine(trg_mf, t_inv / d_shift, shape[::-1])
        src_mf_t = cv2.warpAffine(src_mf, t_ide / d_shift, shape[::-1])

        # Coarse grid search
        t_corr_list = [libreg.affine_registration.match_template_brute( \
                 get_patch_at(trg_mf_t, \
                     src_coord / d_shift, patch_size / d_shift), \
                 scipy.fftpack.fft2(get_patch_at(src_mf_t, \
                     src_coord / d_shift, shift_space / d_shift)), \
                 rotation=slice(0, 1, 1) if angle_space is None \
                     else slice(-angle_space, +angle_space, d_angle), \
                 logscale_x=slice(0, 1, 1) if scale_space is None \
                     else slice(-scale_space, +scale_space, d_scale), \
                 logscale_y=slice(0, 1, 1) if scale_space is None \
                     else slice(-scale_space, +scale_space, d_scale), \
                 find_translation=libreg.affine_registration \
                     .cross_correlation_fft) \
                for src_coord in coarse_src_coords]
        dx = np.array([np.dot(t[:, :2], \
                (patch_size / d_shift, patch_size / d_shift)) \
              + t[:, 2] - (shift_space / d_shift, shift_space / d_shift) \
              for t, _ in t_corr_list])
        coarse_src_coords += dx * d_shift

        corr = np.array([corr for _, corr in t_corr_list], 'float32')

        return coarse_src_coords, corr

    coarse_src_coords_0, coarse_corr_0 = coarse_alignment(t0_inv)
    coarse_src_coords_1, coarse_corr_1 = coarse_alignment(t1_inv)
    coarse_src_coords, coarse_corr = (coarse_src_coords_0, coarse_corr_0) \
            if np.nanmean(coarse_corr_0) > np.nanmean(coarse_corr_1) else \
            (coarse_src_coords_1, coarse_corr_1)

    # Filter out points
    for _ in range(8):
        affine_model = sklearn.linear_model.RANSACRegressor( \
                sklearn.linear_model.LinearRegression(), max_trials=2048, \
                loss='squared_loss')
        try:
            affine_model.fit(coarse_trg_coords, coarse_src_coords)
        except ValueError:
            continue
        else:
            break
    else:
        raise RuntimeError('RANSAC did not converge.')
    coarse_trg_coords_flt = np.ascontiguousarray( \
            coarse_trg_coords[affine_model.inlier_mask_], 'float32')
    coarse_src_coords_flt = np.ascontiguousarray( \
            coarse_src_coords[affine_model.inlier_mask_], 'float32')

    # Warp src_mf with the coarse grid transformation
    trg_mf_warped = warp_image(trg_mf, \
            coarse_src_coords_flt, coarse_trg_coords_flt, mls_alpha, 32)

    # Fine grid
    fine_grid = np.mgrid[tuple(np.s_[: s + fine_scale : fine_scale] \
                         for s in trg_mf.shape)]
    fine_point_in_mask = np.zeros(fine_grid.shape[1:], 'bool')
    end_y = fine_grid.shape[1] - 1
    end_x = fine_grid.shape[2] - 1
    fine_point_in_mask[: end_y, : end_x] = \
            trg_mask[fine_grid[0, : end_y, : end_x], \
                     fine_grid[1, : end_y, : end_x]]
    fine_coord_in_grid = fine_point_in_mask[ \
            np.ones(fine_grid.shape[1:], 'bool')]
    fine_trg_coords = np.ascontiguousarray( \
            fine_grid.reshape((2, -1)).T[:, ::-1], 'float32')
    fine_src_coords = moving_least_squares.similarity( \
            coarse_trg_coords_flt, coarse_src_coords_flt, \
            fine_trg_coords, mls_alpha)

    # Estimate new shifts
    dx_corr_list  = [libreg.affine_registration.cross_correlation_fft( \
                     scipy.fftpack.fft2(get_patch_at(trg_mf_warped, \
                         src_coord, patch_size)), \
                     scipy.fftpack.fft2(get_patch_at(src_mf, \
                         src_coord, patch_size))) \
                   for src_coord \
                   in fine_src_coords[fine_coord_in_grid]]
    dx = np.array([dx for dx, _ in dx_corr_list], 'float32')
    corr = np.array([corr for _ , corr in dx_corr_list], 'float32')

    # Apply fine shifts
    small_map = np.empty(fine_grid.shape[1 : ] + (2, ), 'float32')
    small_map[np.ones(fine_grid.shape[1:], 'bool')] = fine_src_coords
    small_map[fine_point_in_mask] += dx
            
    return small_map
Пример #42
0
def rotate_landmarks(face, rotation_matrix):
    # pylint: disable=c-extension-no-member
    """ Rotate the landmarks and bounding box for faces
        found in rotated images.
        Pass in a DetectedFace object, Alignments dict or BoundingBox"""
    logger.trace("Rotating landmarks: (rotation_matrix: %s, type(face): %s",
                 rotation_matrix, type(face))
    if isinstance(face, DetectedFace):
        bounding_box = [[face.x, face.y],
                        [face.x + face.w, face.y],
                        [face.x + face.w, face.y + face.h],
                        [face.x, face.y + face.h]]
        landmarks = face.landmarksXY

    elif isinstance(face, dict):
        bounding_box = [[face.get("x", 0), face.get("y", 0)],
                        [face.get("x", 0) + face.get("w", 0),
                         face.get("y", 0)],
                        [face.get("x", 0) + face.get("w", 0),
                         face.get("y", 0) + face.get("h", 0)],
                        [face.get("x", 0),
                         face.get("y", 0) + face.get("h", 0)]]
        landmarks = face.get("landmarksXY", list())

    elif isinstance(face, BoundingBox):
        bounding_box = [[face.left, face.top],
                        [face.right, face.top],
                        [face.right, face.bottom],
                        [face.left, face.bottom]]
        landmarks = list()
    else:
        raise ValueError("Unsupported face type")

    logger.trace("Original landmarks: %s", landmarks)

    rotation_matrix = cv2.invertAffineTransform(  # pylint: disable=no-member
        rotation_matrix)
    rotated = list()
    for item in (bounding_box, landmarks):
        if not item:
            continue
        points = np.array(item, np.int32)
        points = np.expand_dims(points, axis=0)
        transformed = cv2.transform(points,  # pylint: disable=no-member
                                    rotation_matrix).astype(np.int32)
        rotated.append(transformed.squeeze())

    # Bounding box should follow x, y planes, so get min/max
    # for non-90 degree rotations
    pt_x = min([pnt[0] for pnt in rotated[0]])
    pt_y = min([pnt[1] for pnt in rotated[0]])
    pt_x1 = max([pnt[0] for pnt in rotated[0]])
    pt_y1 = max([pnt[1] for pnt in rotated[0]])

    if isinstance(face, DetectedFace):
        face.x = int(pt_x)
        face.y = int(pt_y)
        face.w = int(pt_x1 - pt_x)
        face.h = int(pt_y1 - pt_y)
        face.r = 0
        if len(rotated) > 1:
            rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
            face.landmarksXY = rotated_landmarks
    elif isinstance(face, dict):
        face["x"] = int(pt_x)
        face["y"] = int(pt_y)
        face["w"] = int(pt_x1 - pt_x)
        face["h"] = int(pt_y1 - pt_y)
        face["r"] = 0
        if len(rotated) > 1:
            rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
            face["landmarksXY"] = rotated_landmarks
    else:
        rotated_landmarks = BoundingBox(pt_x, pt_y, pt_x1, pt_y1)
        face = rotated_landmarks

    logger.trace("Rotated landmarks: %s", rotated_landmarks)
    return face
Пример #43
0
import numpy as np
from math import * 
import cv2

def dist((x1, y1), (x2, y2)):
  return np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)

src = cv2.imread("mandril.bmp", 0)
(r, c) = src.shape
M = cv2.getRotationMatrix2D((c/2, r/2), 45, 0.5)
Mi = cv2.invertAffineTransform(M)

i1 = src.copy()
(kp1, d1) = cv2.SIFT().detectAndCompute(i1, None)

i2 = src.copy()
i2 = cv2.warpAffine(i2, M, (r, c))
(kp2, d2) = cv2.SIFT().detectAndCompute(i2, None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)

matches = flann.match(d1, d2)

k = 0
for m in matches:
  p1 = kp1[m.queryIdx].pt
  p2 = kp2[m.trainIdx].pt
  p2 = np.dot(Mi,(p2[0], p2[1], 1.0))
Пример #44
0
    def _mask_post_processing(self, mask):
        target_mask = (mask > cfg.TRACK.MASK_THERSHOLD)
        target_mask = target_mask.astype(np.uint8)
        if cv2.__version__[-5] == '4':
            contours, _ = cv2.findContours(target_mask, 
                    cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        else:
            _, contours, _ = cv2.findContours(target_mask, 
                    cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        cnt_area = [cv2.contourArea(cnt) for cnt in contours]
        if len(contours) != 0 and np.max(cnt_area) > 100:
            contour = contours[np.argmax(cnt_area)] 
            polygon = contour.reshape(-1, 2)

            ## the following code estimate the shape angle with ellipse
            ## then fit a axis-aligned bounding box on the rotated image
            
            ellipseBox = cv2.fitEllipse(polygon)
            # get the center of the ellipse and the angle
            angle = ellipseBox[-1]
            #print(angle)
            center = np.array(ellipseBox[0])
            axes = np.array(ellipseBox[1])
            
            # get the ellipse box
            ellipseBox = cv2.boxPoints(ellipseBox)
            
            #compute the rotation matrix
            rot_mat = cv2.getRotationMatrix2D((center[0],center[1]), angle, 1.0)
            
            # rotate the ellipse box
            one = np.ones([ellipseBox.shape[0],3,1])
            one[:,:2,:] = ellipseBox.reshape(-1,2,1)
            ellipseBox = np.matmul(rot_mat, one).reshape(-1,2)
            
            # to xmin ymin xmax ymax
            xs = ellipseBox[:,0]
            xmin, xmax = np.min(xs), np.max(xs)
            ys = ellipseBox[:,1]
            ymin, ymax = np.min(ys), np.max(ys)
            ellipseBox = [xmin, ymin, xmax, ymax]
            
            # rotate the contour
            one = np.ones([polygon.shape[0],3,1])
            one[:,:2,:] = polygon.reshape(-1,2,1)
            polygon = np.matmul(rot_mat, one).astype(int).reshape(-1,2)
            
            # remove points outside of the ellipseBox
            logi = polygon[:,0]<=xmax
            logi = np.logical_and(polygon[:,0]>=xmin, logi)
            logi = np.logical_and(polygon[:,1]>=ymin, logi)
            logi = np.logical_and(polygon[:,1]<=ymax, logi)
            polygon = polygon[logi,:]
            
            x,y,w,h = cv2.boundingRect(polygon)
            bRect = [x, y, x+w, y+h]
            
            # get the intersection of ellipse box and the rotated box
            x1, y1, x2, y2 = ellipseBox[0], ellipseBox[1], ellipseBox[2], ellipseBox[3]
            tx1, ty1, tx2, ty2 = bRect[0], bRect[1], bRect[2], bRect[3]
            xx1 = min(max(tx1, x1, 0), target_mask.shape[1]-1)
            yy1 = min(max(ty1, y1, 0), target_mask.shape[0]-1)
            xx2 = max(min(tx2, x2, target_mask.shape[1]-1), 0)
            yy2 = max(min(ty2, y2, target_mask.shape[0]-1), 0)
            
            rotated_mask = cv2.warpAffine(target_mask, rot_mat,(target_mask.shape[1],target_mask.shape[0]))
            
            #refinement
            alpha_factor = cfg.TRACK.FACTOR
            while True:
                if np.sum(rotated_mask[int(yy1):int(yy2),int(xx1)]) < (yy2-yy1)*alpha_factor:
                    temp = xx1+(xx2-xx1)*0.02
                    if not (temp >= target_mask.shape[1]-1 or xx2-xx1 < 1):
                        xx1 = temp
                    else:
                        break
                else:
                    break
            while True:
                if np.sum(rotated_mask[int(yy1):int(yy2),int(xx2)]) < (yy2-yy1)*alpha_factor:
                    temp = xx2-(xx2-xx1)*0.02
                    if not (temp <= 0 or xx2-xx1 < 1):
                        xx2 = temp
                    else:
                        break
                else:
                    break
            while True:
                if np.sum(rotated_mask[int(yy1),int(xx1):int(xx2)]) < (xx2-xx1)*alpha_factor:
                    temp = yy1+(yy2-yy1)*0.02
                    if not (temp >= target_mask.shape[0]-1 or yy2-yy1 < 1):
                        yy1 = temp
                    else:
                        break
                else:
                    break
            while True:
                if np.sum(rotated_mask[int(yy2),int(xx1):int(xx2)]) < (xx2-xx1)*alpha_factor:
                    temp = yy2-(yy2-yy1)*0.02
                    if not (temp <= 0 or yy2-yy1 < 1):
                        yy2 = temp
                    else:
                        break
                else:
                    break
            
            prbox = np.array([[xx1,yy1],[xx2,yy1],[xx2,yy2],[xx1,yy2]])
            
            # inverse of the rotation matrix
            M_inv = cv2.invertAffineTransform(rot_mat)
            # project the points back to image coordinate
            one = np.ones([prbox.shape[0],3,1])
            one[:,:2,:] = prbox.reshape(-1,2,1)
            prbox = np.matmul(M_inv, one).reshape(-1,2)
            
            rbox_in_img = prbox
        else:  # empty mask
            location = cxy_wh_2_rect(self.center_pos, self.size)
            rbox_in_img = np.array([[location[0], location[1]],
                        [location[0] + location[2], location[1]],
                        [location[0] + location[2], location[1] + location[3]],
                        [location[0], location[1] + location[3]]])
        return rbox_in_img
Пример #45
0
def findRotMaxRect(data_in,flag_opt=False,flag_parallel = False, nbre_angle=10,flag_out=None,flag_enlarge_img=False,limit_image_size=300):
   
    '''
    flag_opt     : True only nbre_angle are tested between 90 and 180 
                        and a opt descent algo is run on the best fit
                   False 100 angle are tested from 90 to 180.
    flag_parallel: only valid when flag_opt=False. the 100 angle are run on multithreading
    flag_out     : angle and rectangle of the rotated image are output together with the rectangle of the original image
    flag_enlarge_img : the image used in the function is double of the size of the original to ensure all feature stay in when rotated
    limit_image_size : control the size numbre of pixel of the image use in the function. 
                       this speeds up the code but can give approximated results if the shape is not simple
    '''
   
    #time_s = datetime.datetime.now()

    #make the image square
    #----------------
    nx_in, ny_in = data_in.shape
    if nx_in != ny_in:
        n = max([nx_in,ny_in])
        data_square = np.ones([n,n])
        xshift = (n-nx_in)/2
        yshift = (n-ny_in)/2 
        if yshift == 0:
            data_square[xshift:(xshift+nx_in),:                 ] = data_in[:,:]
        else: 
            data_square[:                 ,yshift:(yshift+ny_in)] = data_in[:,:]
    else:
        xshift = 0
        yshift = 0
        data_square = data_in

    #apply scale factor if image bigger than limit_image_size
    #----------------
    if data_square.shape[0] > limit_image_size:
        data_small = cv2.resize(data_square,(limit_image_size, limit_image_size),interpolation=0)
        scale_factor = 1.*data_square.shape[0]/data_small.shape[0]
    else:
        data_small = data_square
        scale_factor = 1


    # set the input data with an odd number of point in each dimension to make rotation easier
    #----------------
    nx,ny = data_small.shape
    nx_extra = -nx; ny_extra = -ny   
    if nx%2==0:
        nx+=1
        nx_extra = 1
    if ny%2==0:
        ny+=1
        ny_extra = 1
    data_odd = np.ones([data_small.shape[0]+max([0,nx_extra]),data_small.shape[1]+max([0,ny_extra])])
    data_odd[:-nx_extra, :-ny_extra] = data_small
    nx,ny = data_odd.shape


    nx_odd,ny_odd = data_odd.shape

    if flag_enlarge_img:
        data = np.zeros([2*data_odd.shape[0]+1,2*data_odd.shape[1]+1]) + 1
        nx,ny = data.shape
        data[nx/2-nx_odd/2:nx/2+nx_odd/2,ny/2-ny_odd/2:ny/2+ny_odd/2] = data_odd
    else:
        data = np.copy(data_odd)
        nx,ny = data.shape
   
    #print (datetime.datetime.now()-time_s).total_seconds()

    if flag_opt:
        myranges_brute = ([(90.,180.),])
        coeff0 = np.array([0.,])
        coeff1  = optimize.brute(residual, myranges_brute, args=(data,), Ns=nbre_angle, finish=None)
        popt = optimize.fmin(residual, coeff1, args=(data,), xtol=5, ftol=1.e-5, disp=False)
        angle_selected = popt[0]

        #rotation_angle = np.linspace(0,360,100+1)[:-1]
        #mm = [residual(aa,data) for aa in rotation_angle]
        #plt.plot(rotation_angle,mm)
        #plt.show()
        #pdb.set_trace()

    else:
        rotation_angle = np.linspace(90,180,100+1)[:-1]
        args_here=[]
        for angle in rotation_angle:
            args_here.append([angle,data])
        
        if flag_parallel: 
   
            # set up a pool to run the parallel processing
            cpus = multiprocessing.cpu_count()
            pool = multiprocessing.Pool(processes=cpus)

            # then the map method of pool actually does the parallelisation  

            results = pool.map(residual_star, args_here)
            
            pool.close()
            pool.join()
            
       
        else:
            results = []
            for arg in args_here:
                results.append(residual_star(arg))
                
        argmin = np.array(results).argmin()
        angle_selected = args_here[argmin][0]
    rectangle, M_rect_max, RotData  = get_rectangle_coord(angle_selected,data,flag_out=True)
    #rectangle, M_rect_max  = get_rectangle_coord(angle_selected,data)

    #print (datetime.datetime.now()-time_s).total_seconds()

    #invert rectangle 
    M_invert = cv2.invertAffineTransform(M_rect_max)
    rect_coord = [rectangle[:2], [rectangle[0],rectangle[3]] , 
                  rectangle[2:], [rectangle[2],rectangle[1]] ]
   
    #ax = plt.subplot(111)
    #ax.imshow(RotData.T,origin='lower',interpolation='nearest')
    #patch = patches.Polygon(rect_coord, edgecolor='k', facecolor='None', linewidth=2)
    #ax.add_patch(patch)
    #plt.show()

    rect_coord_ori = []
    for coord in rect_coord:
        rect_coord_ori.append(np.dot(M_invert,[coord[0],(ny-1)-coord[1],1]))

    #transform to numpy coord of input image
    coord_out = []
    for coord in rect_coord_ori:
        coord_out.append(    [ scale_factor*round(       coord[0]-(nx/2-nx_odd/2),0)-xshift,\
                               scale_factor*round((ny-1)-coord[1]-(ny/2-ny_odd/2),0)-yshift])
    
    coord_out_rot = []
    coord_out_rot_h = []
    for coord in rect_coord:
        coord_out_rot.append( [ scale_factor*round(       coord[0]-(nx/2-nx_odd/2),0)-xshift, \
                                scale_factor*round(       coord[1]-(ny/2-ny_odd/2),0)-yshift ])
        coord_out_rot_h.append( [ scale_factor*round(       coord[0]-(nx/2-nx_odd/2),0), \
                                  scale_factor*round(       coord[1]-(ny/2-ny_odd/2),0) ])

    #M = cv2.getRotationMatrix2D( ( (data_square.shape[0]-1)/2, (data_square.shape[1]-1)/2 ), angle_selected,1)
    #RotData = cv2.warpAffine(data_square,M,data_square.shape,flags=cv2.INTER_NEAREST,borderValue=1)
    #ax = plt.subplot(121)
    #ax.imshow(data_square.T,origin='lower',interpolation='nearest')
    #ax = plt.subplot(122)
    #ax.imshow(RotData.T,origin='lower',interpolation='nearest')
    #patch = patches.Polygon(coord_out_rot_h, edgecolor='k', facecolor='None', linewidth=2)
    #ax.add_patch(patch)
    #plt.show()      
    
    #coord for data_in
    #----------------
    #print scale_factor, xshift, yshift
    #coord_out2 = []
    #for coord in coord_out:
    #    coord_out2.append([int(np.round(scale_factor*coord[0]-xshift,0)),int(np.round(scale_factor*coord[1]-yshift,0))])

    #print (datetime.datetime.now()-time_s).total_seconds()

    if flag_out is None:
        return coord_out
    elif flag_out == 'rotation':
        return coord_out, angle_selected, coord_out_rot
    else:
        print 'bad def in findRotMaxRect input. stop'
        pdb.set_trace()
Пример #46
0
    def detectWithAngles(self, img, angels = None, resolve = True, thr = None ):
        '''
        angles - a list of angles to test. If None, default to the value created at the constructor (which defaults to [0])
        resolve - a boolean flag, whether or not to cluster the boxes, and resolve cluster by highest score.
        thr - the maximum area covered with objects, before we break from the angles loop
        
        returns - a list of CascadeResult() objects
        '''
        
        if thr == None:
            thr = self.thr
            
        original_size = img.shape[0] * img.shape[0]
        if angels == None:
            angels = self.angles
            
        results = []
        total_area = 0
        for angle in angels:

            # the diagonal of the image is the diameter of the rotated image, so the big_image needs to bound this circle
            # by being that big

            big_image, x_shift, y_shift, diag, rot_center = pad_image_for_rotation(img)
            
            # find the rotation and the inverse rotation matrix, to allow translations between old and new coordinates and vice versa
            rot_mat = cv2.getRotationMatrix2D(rot_center, angle, scale = 1.0)
            inv_rot_mat = cv2.invertAffineTransform(rot_mat)
            
            # rotate the image by the desired angle
            rot_image = cv2.warpAffine(big_image, rot_mat, (big_image.shape[1],big_image.shape[0]), flags=cv2.INTER_CUBIC)
            faces = self.detectMultiScaleWithScores(rot_image, scaleFactor = 1.03, minNeighbors = 20, minSize = (15,15), flags = 4)
            for face in faces:
                xp = face[0]
                dx = face[2]
                yp = face[1]
                dy = face[3]
                score = 1
                dots = np.matrix([[xp,xp+dx,xp+dx,xp], [yp,yp,yp+dy,yp+dy], [1, 1, 1, 1]])
                # these are the original coordinates in the "big_image"
#                print dots
                originals_in_big = inv_rot_mat * dots
#                print originals_in_big
                shifter = np.matrix([[x_shift]*4, [y_shift]*4])
#                print shifter
                # these are the original coordinate in the original image
                originals = originals_in_big - shifter
#                print originals
                points = np.array(originals.transpose())
                x = points[0,0]
                y = points[0,1]
                box_with_score = ([x,y,dx,dy], score)
                
                cascade_result = CascadeResult.from_polygon_points(points, score, self.cascade_type)
#                print cascade_result
                
                results.append(cascade_result)
            
            #################
            # test and see, if we found enough objects, break out and don't waste our time
                total_area += cascade_result.area     
            
        if resolve:
            return resolve_angles(results, width = img.shape[1], height = img.shape[0])
        else:
            return results
Пример #47
0
def transformAndCalcBest(groundTruthFolder, testPath, saveFolder, poorMapsFolder,hit,miss,unknown,feature='sift'):
    groundTruthList = deque()
    ROCs = deque()
    FLANN_INDEX_KDTREE = 0

    out = 1

    if feature == 'orb':
        feature_obj = cv2.ORB_create()
    if feature == 'sift':
        feature_obj = cv2.xfeatures2d.SIFT_create()

    for fileN in os.listdir(groundTruthFolder):
        if not fileN.endswith(".png"):
            continue
        imFile = os.path.join(groundTruthFolder,fileN)
        print("Loading: %s"%(imFile))
        im = cv2.imread(imFile,0)
        print("Loaded!")
        kp, des = feature_obj.detectAndCompute(im,None)
        des = np.asarray(des,np.float32)
        groundTruthList.append((fileN,os.path.join(saveFolder,os.path.splitext(fileN)[0]),im,des,kp))

    if not os.path.isdir(saveFolder):
        os.makedirs(saveFolder)

    # for gt_file,gt_folder,gt_im,gt_des,gt_kp in groundTruthList:
    #     if not os.path.isdir(gt_folder):
    #         os.makedirs(gt_folder)

    for fileN in os.listdir(testPath):
        if not fileN.endswith(".pgm"):
            continue
        imFile = os.path.join(testPath,fileN)
        imFileP = os.path.join(poorMapsFolder,fileN)
        if out>0:
            print("Loading: %s"%(imFile))
        im = cv2.imread(imFile,0)
        if out>0:
            print("Loaded!")
        kp, des = feature_obj.detectAndCompute(im,None)
        des = np.asarray(des,np.float32)

        best_fpr=best_tpr=best_mtr=best_val=0
        best_file=best_folder=None
        best_im=None

        for gt_file,gt_folder,gt_im,gt_des,gt_kp in groundTruthList:
            if out>1:
                print("With: %s"%(gt_file))
            height, width = gt_im.shape
            index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
            search_params = dict(checks = 50)
            flann = cv2.FlannBasedMatcher(index_params, search_params)
            matches = flann.knnMatch(des,gt_des,k=2)
            good = deque()
            for m,n in matches:
                if m.distance < 0.7*n.distance:
                    good.append(m)
            if out>1:
                print("Found %f points"%(len(good)))
            if len(good)<1:
                if out>1:
                    print("Not enough points!")
                continue
            dst_pts = np.float32([kp[m.queryIdx].pt for m in good]).reshape(-1,1,2)
            src_pts = np.float32([gt_kp[m.trainIdx].pt for m in good]).reshape(-1,1,2)
            M = cv2.estimateRigidTransform(src_pts,dst_pts,False)
            if M!=None:
                M = np.asarray(M,np.float32)
                M = cv2.invertAffineTransform(M)
                imW = cv2.warpAffine(im,M,(width,height),cv2.INTER_NEAREST)
                imW = imW-hit
                imW = cv2.threshold(imW,unknown-2-hit,255,3)
                imW = miss-hit-imW[1]
                imW = cv2.threshold(imW,miss-unknown,255,3)
                imW = miss-imW[1]
                fpr, tpr, mtr = ROCCalc.calcROC(gt_im,imW,miss,hit)

                new_best_val = ((tpr-fpr)/2.0)*math.sqrt(2)
                if (new_best_val>best_val):
                    best_val = new_best_val
                    best_fpr = fpr
                    best_tpr = tpr
                    best_mtr = mtr
                    best_file = gt_file
                    best_folder = gt_folder
                    best_im = imW
            else:
                if out>1:
                    print("No homography found!")

        if (best_im!=None):
            ROCs.append([fileN,[best_fpr,best_tpr],best_mtr,best_file])
            if not os.path.isdir(best_folder):
                os.makedirs(best_folder)
            im_file = os.path.join(best_folder,fileN)
            # print("\n")
            # print(im_file)
            # print("\n")
            cv2.imwrite(im_file,best_im)
        else:
            if not os.path.isdir(poorMapsFolder):
                os.makedirs(poorMapsFolder)
            im_file = os.path.join(poorMapsFolder,fileN)
            cv2.imwrite(im_file,im)
        # break
    return ROCs
Пример #48
0
def process_splits(trans, conf, splits, norm2, ctc_f, rot_mat, boxt, draw, iou, debug = False, alow_non_dict = False):

  '''
  Summary : Split the transciption and corresponding bounding-box based on spaces predicted by recognizer FCN.
  Description : 

  Parameters
  ----------
  trans : string
      String containing the predicted transcription for the corresponding predicted bounding-box.
  conf : list
      List containing sum of confidence for all the character by recognizer FCN, start and end position in bounding-box for generated transciption.
  splits :  list
      List containing index of position of predicted spaces by the recognizer FCN.
  norm2 : matrix
      Matrix containing the cropped bounding-box predicted by localization FCN in the originial image.
  ctc_f : matrix
      Matrix containing output of recognizer FCN for the given input bounding-box.
  rot_mat : matrix
      Rotation matrix returned by get_normalized_image function.
  boxt : tuple of tuples
      Tuple of tuples containing parametes of predicted bounding-box by localization FCN.
  draw : matrix
      Matrix containing input image. 
  debug : boolean
      Boolean parameter representing debug mode, if it is True visualization boxes are generated.
          
  Returns
  -------
  boxes_out : list of tuples
      List of tuples containing predicted bounding-box parameters, predicted transcription and mean confidence score from the recognizer.
  '''
  
  spl = trans.split(" ")
  boxout = cv2.boxPoints(boxt)
  start_f = 0
  mean_conf = conf[0, 0] / len(trans) # Overall confidence of recognizer FCN
  boxes_out = []
  
  for s in range(len(spl)):
      
    text = spl[s]
    
    end_f = conf[0, 2]
    if s < len(spl) - 1:
      try:
        if splits[0, s] > start_f:
          end_f = splits[0, s] # New ending point of bounding-box transcription
      except IndexError:
        pass
    
    scalex = norm2.shape[1] / float(ctc_f.shape[0])
        
    poss = start_f * scalex
    pose = (end_f + 2) * scalex
    rect = [[poss, 0], [pose, 0], \
            [pose, norm2.shape[0] - 1], [poss, norm2.shape[0] - 1]]
    rect = np.array(rect)
    #rect[:, 0] +=  boxt[0][0]
    #rect[:, 1] += boxt[0][1]
    
    int_t = cv2.invertAffineTransform(rot_mat)
    
    dst_rect = np.copy(rect)
    dst_rect[:,0]  = int_t[0,0]*rect[:,0] + int_t[0,1]*rect[:, 1] + int_t[0,2]
    dst_rect[:,1]  = int_t[1,0]*rect[:,0] + int_t[1,1]*rect[:, 1] + int_t[1,2]
    
    
    tx = np.sum(dst_rect[:,0]) / 4.0
    ty = np.sum(dst_rect[:,1]) / 4.0
    br = cv2.boundingRect(boxout)
    tx += br[0]
    ty += br[1]
    twidth = (pose - poss) #twidth = (pose - poss) / ext_factor
    theight = norm2.shape[0]
    
    
    box_back = ( (tx, ty), (twidth, theight * 0.9), boxt[2] )
    
    if debug:
      boxout_u = cv2.boxPoints(box_back)
      vis.draw_box_points(draw, boxout_u, color = (0, 255, 0))
      cv2.imshow('draw', draw)
        
    if len(text.strip()) == 0:
      print("zero length text!")
      continue 
    
    textc = text.replace(".", "").replace(":", "").replace("!", "").replace("?", "").replace(",", "").replace("/", "").replace("-", "").replace("$", "").replace("'", "").replace("(", "").replace(")", "").replace("+", "")
    if textc.endswith("'s"):
      textc = textc[:-2]
    is_dict = cmp_trie.is_dict(textc.encode('utf-8')) or textc.isdigit() or alow_non_dict
    if len(text) > 2 and ( text.isdigit() or is_dict):
        boxes_out.append( (box_back, (text, mean_conf, is_dict, iou) ) )
    start_f = end_f + 1      
  return boxes_out