LAM_GEXF_FILE = 'lamina.gexf.gz' INPUT_FILE = 'vision_input.h5' IMAGE_FILE = 'image1.mat' RET_OUTPUT_FILE = 'retina_output' LAM_OUTPUT_FILE = 'lamina_output' RET_OUTPUT_GPOT = RET_OUTPUT_FILE + '_gpot.h5' LAM_OUTPUT_GPOT = LAM_OUTPUT_FILE + '_gpot.h5' RET_OUTPUT_PNG = 'retina_output.png' LAM_OUTPUT_PNG = 'lamina_output.png' RET_OUTPUT_AVI = 'retina_output.avi' LAM_OUTPUT_AVI = 'lamina_output.avi' RET_OUTPUT_MPEG = 'retina_output.mp4' LAM_OUTPUT_MPEG = 'lamina_output.mp4' eyemodel = EyeGeomImpl(args.num_layers, retina_only=args.retina_only) #current implementation of output manipulation depends on input if args.output: args.input = True if args.input: print('Generating input of model from image file') _dummy = eyemodel.get_intensities(IMAGE_FILE, {'type': args.video_type, 'steps': args.steps, 'dt': dt, 'output_file': INPUT_FILE, 'factors': [1, 5, 10, 20, 50, 100]}) if args.gexf: print('Writing retina lpu') eyemodel.write_retina(RET_GEXF_FILE)
RET_OUTPUT_GPOT = RET_OUTPUT_FILE + '_gpot.h5' LAM_OUTPUT_GPOT = LAM_OUTPUT_FILE + '_gpot.h5' MED_OUTPUT_GPOT = MED_OUTPUT_FILE + '_gpot.h5' RET_OUTPUT_PNG = 'retina_output.png' LAM_OUTPUT_PNG = 'lamina_output.png' RET_OUTPUT_AVI = 'retina_output.avi' LAM_OUTPUT_AVI = 'lamina_output.avi' RET_OUTPUT_MPEG = 'retina_output.mp4' LAM_OUTPUT_MPEG = 'lamina_output.mp4' # XXX eyemodel's calculations that depend on model are checked internally # that will cause some messages to be printed, like 'Writing retina lpu' # without that necessarily taking place print('Instantiating eye geometry') eyemodel = EyeGeomImpl(args.num_layers, model=args.model) if args.input: print('Generating input of model') config = {'type': args.type, 'steps': args.steps, 'dt': dt, 'output_file': RET_INPUT} ''' replace with above for bar generation config = {'type': 'bar', 'steps': args.steps, 'dt': dt, 'shape': (100,100), 'width': 20, 'speed': 100, 'dir':0} ''' _dummy = eyemodel.get_intensities(file=None, config=config) if args.gexf:
LAM_GEXF_FILE = 'lamina.gexf.gz' INPUT_FILE = 'vision_input.h5' IMAGE_FILE = 'image1.mat' RET_OUTPUT_FILE = 'retina_output' LAM_OUTPUT_FILE = 'lamina_output' RET_OUTPUT_GPOT = RET_OUTPUT_FILE + '_gpot.h5' LAM_OUTPUT_GPOT = LAM_OUTPUT_FILE + '_gpot.h5' RET_OUTPUT_PNG = 'retina_output.png' LAM_OUTPUT_PNG = 'lamina_output.png' RET_OUTPUT_AVI = 'retina_output.avi' LAM_OUTPUT_AVI = 'lamina_output.avi' RET_OUTPUT_MPEG = 'retina_output.mp4' LAM_OUTPUT_MPEG = 'lamina_output.mp4' eyemodel = EyeGeomImpl(args.num_layers, retina_only=args.retina_only) #current implementation of output manipulation depends on input if args.output: args.input = True if args.input: print('Generating input of model from image file') _dummy = eyemodel.get_intensities( IMAGE_FILE, { 'type': args.video_type, 'steps': args.steps, 'dt': dt, 'output_file': INPUT_FILE, 'factors': [1, 5, 10, 20, 50, 100] })
RET_OUTPUT_GPOT = RET_OUTPUT_FILE + '_gpot.h5' LAM_OUTPUT_GPOT = LAM_OUTPUT_FILE + '_gpot.h5' MED_OUTPUT_GPOT = MED_OUTPUT_FILE + '_gpot.h5' RET_OUTPUT_PNG = 'retina_output.png' LAM_OUTPUT_PNG = 'lamina_output.png' RET_OUTPUT_AVI = 'retina_output.avi' LAM_OUTPUT_AVI = 'lamina_output.avi' RET_OUTPUT_MPEG = 'retina_output.mp4' LAM_OUTPUT_MPEG = 'lamina_output.mp4' # XXX eyemodel's calculations that depend on model are checked internally # that will cause some messages to be printed, like 'Writing retina lpu' # without that necessarily taking place print('Instantiating eye geometry') eyemodel = EyeGeomImpl(args.num_layers, model=args.model) if args.input: print('Generating input of model') config = { 'type': args.type, 'steps': args.steps, 'dt': dt, 'output_file': RET_INPUT } ''' replace with above for bar generation config = {'type': 'bar', 'steps': args.steps, 'dt': dt, 'shape': (100,100), 'width': 20, 'speed': 100, 'dir':0}