Пример #1
0
        k = p.name
        d[k] = p.get_value(borrow=False)
    np.savez(fname, **d)


def load_parameters(epoch=None):
    fname = "weights.npz" if epoch is None else "weights.%d.npz" % epoch
    f = np.load(fname)
    for p in parameters:
        p.set_value(f[p.name])


def report(d):
    import json
    with open("learning_curve.txt", "a") as fh:
        fh.write(json.dumps(d))
        fh.write("\n")
    print "epoch=%-6s -- trn_cost=%0.8f tst_cost=%0.8f" % (d['_epoch'],
                                                           d['trn'], d['tst'])


if __name__ == '__main__':
    # generate some simple training data
    import uuid
    run_name = uuid.uuid4().hex[:8]
    n_samples = 10000
    x_train_val, y_train_val = datasets.sinewaves(n_steps, n=n_samples)
    x_test_val, y_test_val = datasets.sinewaves(
        n_steps, n=20)  # (n_samples, n_steps, n_x)
    train(x_train_val, y_train_val, x_test_val, y_test_val)
Пример #2
0
def train(x_train_val, y_train_val):
    x_train = theano.shared(x_train_val)
    y_train = theano.shared(y_train_val)
    n_samples = x_train_val.shape[0]

    # creating training function
    learn_fn = make_learner(x_train, y_train, param_updates)

    # start gradient descent w/ batch_size==1
    max_epochs = 1000
    lr_val = 0.5
    for epoch in range(max_epochs):
        costs = []
        for idx in range(n_samples):
            sample_cost = learn_fn(idx, lr_val)
            costs.append(sample_cost[0])

        print "epoch=%-6s -- cost=%0.8f" % (epoch, np.mean(costs))



if __name__ == '__main__':
    # generate some simple training data
    n_samples = 100
    timesteps = 20
    x_train_val, y_train_val = datasets.sinewaves(timesteps, n=n_samples)
    train(x_train_val, y_train_val)
    predictor = make_predictor()

Пример #3
0
    for p in parameters:
        k = p.name
        d[k] = p.get_value(borrow=False)
    np.savez("weights.npz", **d)


def load_parameters():
    f = np.load("weights.npz")
    for p in parameters:
        p.set_value(f[p.name])


def report(d):
    import json

    with open("learning_curve.txt", "a") as fh:
        fh.write(json.dumps(d))
        fh.write("\n")
    print "epoch=%-6s -- trn_cost=%0.8f tst_cost=%0.8f" % (d["_epoch"], d["trn"], d["tst"])


if __name__ == "__main__":
    # generate some simple training data
    import uuid

    run_name = uuid.uuid4().hex[:8]
    n_samples = 1
    x_train_val, y_train_val = datasets.sinewaves(n_steps, n=n_samples)
    x_test_val, y_test_val = datasets.sinewaves(n_steps, n=20)
    train(x_train_val, y_train_val, x_test_val, y_test_val)