Пример #1
0
def test_down_conversion(args):
    """
    @brief test to see if input signal of known frequency has been down converted
    after mixing with known frequency
    """

    output_steps = 2**args.freq_bits

    # define the timestep for the 2 time series
    dt_ddc = output_steps / args.clk
    dt_data = 1. / args.clk

    # read in the data from the ddc_bram and data_bram files
    t_ddc, d_ddc = digital_utils.process_ddc_bram(args.ddc_file,
                                                  timestep=dt_ddc)
    t_data, d_data = digital_utils.process_data_bram(args.data_file,
                                                     timestep=dt_data)

    # get the power spectra of the signals
    f_ddc, p_ddc = digital_utils.power(d_ddc, dt_ddc)
    f_data, p_data = digital_utils.power(d_data, dt_data)

    # plot the input signal on first subplot
    pl.subplots_adjust(hspace=0.3)
    pl.subplot(211)
    pl.plot(f_data / 1e6, p_data)

    # add the necessary info to the subplot
    pl.figtext(0.2, 0.85, 'input tone at %.3f MHz' % (args.input_freq / 1e6))
    pl.xlabel('frequency (MHz)', fontsize=16)
    pl.ylabel('power', fontsize=16)
    pl.xlim(-1.5 * args.input_freq / 1e6, 1.5 * args.input_freq / 1e6)

    pl.subplot(212)

    # determine the expected down-converted frequency, as mixer frequency - input freq
    f_expected = abs(args.lof_int * args.clk / output_steps - args.input_freq)

    # plot the down-converted spectra
    pl.plot(f_ddc / 1e3, p_ddc)
    pl.figtext(0.2, 0.4, 'mixed tone at %.3f kHz' % (f_expected / 1e3))
    pl.xlabel('frequency (kHZ)', fontsize=16)
    pl.ylabel('power', fontsize=16)
    pl.xlim(-1.5 * f_expected / 1e3, 1.5 * f_expected / 1e3)
    pl.show()

    return
Пример #2
0
def test_down_conversion(args):
    """
    @brief test to see if input signal of known frequency has been down converted
    after mixing with known frequency
    """
    
    output_steps = 2**args.freq_bits
    
    # define the timestep for the 2 time series
    dt_ddc = output_steps/args.clk
    dt_data = 1./args.clk
    
    # read in the data from the ddc_bram and data_bram files
    t_ddc, d_ddc = digital_utils.process_ddc_bram(args.ddc_file, timestep=dt_ddc)
    t_data, d_data = digital_utils.process_data_bram(args.data_file, timestep=dt_data)
    
    # get the power spectra of the signals
    f_ddc, p_ddc = digital_utils.power(d_ddc, dt_ddc)
    f_data, p_data = digital_utils.power(d_data, dt_data)
    
    # plot the input signal on first subplot
    pl.subplots_adjust(hspace=0.3)
    pl.subplot(211)
    pl.plot(f_data/1e6, p_data)
    
    # add the necessary info to the subplot
    pl.figtext(0.2, 0.85, 'input tone at %.3f MHz' %(args.input_freq/1e6))
    pl.xlabel('frequency (MHz)', fontsize=16)
    pl.ylabel('power', fontsize=16)
    pl.xlim(-1.5*args.input_freq/1e6, 1.5*args.input_freq/1e6)
    
    pl.subplot(212)
    
    # determine the expected down-converted frequency, as mixer frequency - input freq
    f_expected = abs(args.lof_int * args.clk / output_steps - args.input_freq)
    
    # plot the down-converted spectra 
    pl.plot(f_ddc/1e3, p_ddc)
    pl.figtext(0.2, 0.4, 'mixed tone at %.3f kHz' %(f_expected/1e3))
    pl.xlabel('frequency (kHZ)', fontsize=16)
    pl.ylabel('power', fontsize=16)
    pl.xlim(-1.5*f_expected/1e3, 1.5*f_expected/1e3)
    pl.show()
    
    return
Пример #3
0
    def rcv(self, ns, trig):
        """
        @brief receive the data from a UDP socket
        
        @param ns: the shared Namespace between the two running Processes
        (multiprocessing.Manager.Namespace)
        @param trig: a trigger event to make sure we don't write/read shared array
        at same time (multiprocessing.Event)
        """
        # set up the socket as UDP
        sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

        # always make sure we close the socket if program crashes
        try:
            # bind the socket to the input port
            sock.bind(('0.0.0.0', self.port))

            # loop continuously and receive data
            while True:

                # read in new data as long as the trig is not set
                if not trig.is_set():

                    # receive the binary data through the socket
                    binary_data = sock.recv(self.max_recvd_bytes)

                    # process the binary data depending on if it is from a ddc_bram or data_bram file
                    if self.dtype == 'ddc':
                        times, newdata = digital_utils.process_ddc_bram(
                            None, timestep=self.dt, data=binary_data)
                    else:
                        times, newdata = digital_utils.process_data_bram(
                            None, timestep=self.dt, data=binary_data)

                    # concatenate these unseen samples together
                    ns.unseen_samples = np.concatenate(
                        (ns.unseen_samples, newdata))
        except:
            raise
        finally:
            sock.close()
Пример #4
0
 def rcv(self, ns, trig):
     """
     @brief receive the data from a UDP socket
     
     @param ns: the shared Namespace between the two running Processes
     (multiprocessing.Manager.Namespace)
     @param trig: a trigger event to make sure we don't write/read shared array
     at same time (multiprocessing.Event)
     """
     # set up the socket as UDP
     sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
     
     # always make sure we close the socket if program crashes
     try: 
         # bind the socket to the input port
         sock.bind( ('0.0.0.0', self.port) )
         
         # loop continuously and receive data
         while True:
         
             # read in new data as long as the trig is not set
             if not trig.is_set():
                 
                 # receive the binary data through the socket
                 binary_data = sock.recv(self.max_recvd_bytes)
                 
                 # process the binary data depending on if it is from a ddc_bram or data_bram file
                 if self.dtype == 'ddc':
                     times, newdata = digital_utils.process_ddc_bram(None, timestep=self.dt, data=binary_data)
                 else:
                     times, newdata = digital_utils.process_data_bram(None, timestep=self.dt, data=binary_data)
                     
                 # concatenate these unseen samples together
                 ns.unseen_samples = np.concatenate( (ns.unseen_samples, newdata) ) 
     except:
         raise
     finally:
         sock.close()
Пример #5
0
if __name__ == '__main__':
    
    # parse the input arguments
    parser = argparse.ArgumentParser(description="charactize digital filter for input signal")
    parser.add_argument('signal_file', type=str, help='name of file containing true input signal')
    parser.add_argument('convolved_file', type=str, help='name of file containing convolved signal')
    parser.add_argument('--dt', type=float, default=5e-9, help='timestep of data file')
    parser.add_argument('--keepDC', action='store_false', help='do not remove DC bias from input signal')
    parser.add_argument('--smoothing', type=int, default=0, help='kernel of gaussian smoothing function to apply to power spectra')
    parser.add_argument('--fitGaussian', action='store_true', help='whether to fit a gaussian to filter shape')
    parser.add_argument('--fitSinc', action='store_true', help='whether to fit a sinc to filter shape')
    
    args = parser.parse_args()
    
    # proces the data from the convolved and true input signal files
    t_conv, d_conv = digital_utils.process_data_bram(args.convolved_file, timestep=args.dt)
    t_true, d_true = digital_utils.process_data_bram(args.signal_file, timestep=args.dt)
    
    # get the power spectra
    f_conv, p_conv = digital_utils.power(d_conv, args.dt, smoothing=args.smoothing, keepDC=args.keepDC)
    f_true, p_true = digital_utils.power(d_true, args.dt, smoothing=args.smoothing, keepDC=args.keepDC)
    
    # restrict the filter to positive frequencies
    filt = p_conv/p_true
    inds = np.where(f_true > 0)[0]
    filt = filt[inds]
    f_true = f_true[inds]/1e6 # now in MHz
    
    # plot the filter
    pl.plot(f_true, filt, c='k', label='recovered filter')
    
Пример #6
0
    parser.add_argument(
        '--smoothing',
        type=int,
        default=0,
        help='kernel of gaussian smoothing function to apply to power spectra')
    parser.add_argument('--fitGaussian',
                        action='store_true',
                        help='whether to fit a gaussian to filter shape')
    parser.add_argument('--fitSinc',
                        action='store_true',
                        help='whether to fit a sinc to filter shape')

    args = parser.parse_args()

    # proces the data from the convolved and true input signal files
    t_conv, d_conv = digital_utils.process_data_bram(args.convolved_file,
                                                     timestep=args.dt)
    t_true, d_true = digital_utils.process_data_bram(args.signal_file,
                                                     timestep=args.dt)

    # get the power spectra
    f_conv, p_conv = digital_utils.power(d_conv,
                                         args.dt,
                                         smoothing=args.smoothing,
                                         keepDC=args.keepDC)
    f_true, p_true = digital_utils.power(d_true,
                                         args.dt,
                                         smoothing=args.smoothing,
                                         keepDC=args.keepDC)

    # restrict the filter to positive frequencies
    filt = p_conv / p_true