Пример #1
0
    def load_refjson(self, refjson_fname):
        try:
            self.refjson = RefJsonParser(refjson_fname)
        except ValueError:
            self.cfg.exit_user_error("ERROR: Invalid json file format!")

        #validate input json format
        (valid, err) = self.refjson.validate()
        if not valid:
            self.cfg.log.error(
                "ERROR: Parsing reference JSON file failed:\n%s", err)
            self.cfg.exit_user_error()

        self.rate = self.refjson.get_rate()
        self.node_height = self.refjson.get_node_height()
        self.origin_taxonomy = self.refjson.get_origin_taxonomy()
        self.tax_tree = self.refjson.get_tax_tree()
        self.cfg.compress_patterns = self.refjson.get_pattern_compression()

        self.bid_taxonomy_map = self.refjson.get_branch_tax_map()
        if not self.bid_taxonomy_map:
            # old file format (before 1.6), need to rebuild this map from scratch
            th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
            th.set_mf_rooted_tree(self.tax_tree)
            th.set_bf_unrooted_tree(self.refjson.get_reftree())
            self.bid_taxonomy_map = th.get_bid_taxonomy_map()

        self.write_bid_tax_map(self.bid_taxonomy_map, final=False)

        reftree_str = self.refjson.get_raxml_readable_tree()
        self.reftree = Tree(reftree_str)
        self.reftree_size = len(self.reftree.get_leaves())

        # IMPORTANT: set EPA heuristic rate based on tree size!
        self.cfg.resolve_auto_settings(self.reftree_size)
        # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file
        if self.cfg.epa_load_optmod:
            self.cfg.raxml_model = self.refjson.get_ratehet_model()

        self.classify_helper = TaxClassifyHelper(self.cfg,
                                                 self.bid_taxonomy_map,
                                                 self.rate, self.node_height)
        self.taxtree_helper = TaxTreeHelper(self.cfg, self.origin_taxonomy,
                                            self.tax_tree)

        tax_code_name = self.refjson.get_taxcode()
        self.tax_code = TaxCode(tax_code_name)

        self.taxonomy = Taxonomy(prefix=EpacConfig.REF_SEQ_PREFIX,
                                 tax_map=self.origin_taxonomy)
        self.tax_common_ranks = self.taxonomy.get_common_ranks()
        #        print "Common ranks: ", self.tax_common_ranks

        self.mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
        self.rank_mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
Пример #2
0
 def test_zoo_taxcode(self):
     self.taxcode = TaxCode("ZOO")
     tests = []
     ranks = "Animalia;Chordata;Mammalia;Rodentia;Muridae;Apodemus;agrarius"
     expected_levels = "kingdom;phylum;class;order;family;genus;species"
     tests += [(ranks, expected_levels)]
     ranks = "Animalia;Chordata;Mammalia;Primates;Hominidae;Homininae;Hominini;Hominina;H**o;sapiens"
     expected_levels = "kingdom;phylum;class;order;family;subfamily;tribe;subtribe;genus;species"
     tests += [(ranks, expected_levels)]
     self.check_ranks(tests)
Пример #3
0
 def test_bac_taxcode(self):
     self.taxcode = TaxCode("BAC")
     tests = []
     ranks = "Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiaceae;Clostridium;Clostridium rectum"
     expected_levels = "kingdom;phylum;class;order;family;genus;species"
     tests += [(ranks, expected_levels)]
     ranks = "Bacteria;Actinobacteria;Actinobacteria;Actinobacteridae;Actinomycetales;Micrococcineae;Micrococcaceae;Acaricomes;Acaricomes phytoseiuli"
     expected_levels = "kingdom;phylum;class;subclass;order;suborder;family;genus;species"
     tests += [(ranks, expected_levels)]
     ranks = "k__Bacteria; p__Acidobacteria; c__[Chloracidobacteria]; o__[Chloracidobacterales]; f__[Chloracidobacteraceae]; g__Candidatus Chloracidobacterium; s__"
     expected_levels = "kingdom;phylum;class;order;family;genus;species"
     tests += [(ranks, expected_levels)]
     self.check_ranks(tests)
Пример #4
0
    def load_refjson(self, refjson_fname):
        try:
            self.refjson = RefJsonParser(refjson_fname)
        except ValueError:
            self.cfg.exit_user_error("ERROR: Invalid json file format!")
            
        #validate input json format 
        (valid, err) = self.refjson.validate()
        if not valid:
            self.cfg.log.error("ERROR: Parsing reference JSON file failed:\n%s", err)
            self.cfg.exit_user_error()
        
        self.rate = self.refjson.get_rate()
        self.node_height = self.refjson.get_node_height()
        self.origin_taxonomy = self.refjson.get_origin_taxonomy()
        self.tax_tree = self.refjson.get_tax_tree()
        self.cfg.compress_patterns = self.refjson.get_pattern_compression()

        self.bid_taxonomy_map = self.refjson.get_branch_tax_map()
        if not self.bid_taxonomy_map:
            # old file format (before 1.6), need to rebuild this map from scratch
            th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
            th.set_mf_rooted_tree(self.tax_tree)
            th.set_bf_unrooted_tree(self.refjson.get_reftree())
            self.bid_taxonomy_map = th.get_bid_taxonomy_map()
            
        self.write_bid_tax_map(self.bid_taxonomy_map, final=False)

        reftree_str = self.refjson.get_raxml_readable_tree()
        self.reftree = Tree(reftree_str)
        self.reftree_size = len(self.reftree.get_leaves())

        # IMPORTANT: set EPA heuristic rate based on tree size!                
        self.cfg.resolve_auto_settings(self.reftree_size)
        # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file        
        if self.cfg.epa_load_optmod:
            self.cfg.raxml_model = self.refjson.get_ratehet_model()

        self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, self.rate, self.node_height)
        self.taxtree_helper = TaxTreeHelper(self.cfg, self.origin_taxonomy, self.tax_tree)
        
        tax_code_name = self.refjson.get_taxcode()
        self.tax_code = TaxCode(tax_code_name)
        
        self.taxonomy = Taxonomy(prefix=EpacConfig.REF_SEQ_PREFIX, tax_map=self.origin_taxonomy)
        self.tax_common_ranks = self.taxonomy.get_common_ranks()
#        print "Common ranks: ", self.tax_common_ranks

        self.mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
        self.rank_mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
Пример #5
0
    def test_bot_taxcode(self):
        self.taxcode = TaxCode("BOT")
        tests = []
        ranks = "Apocynoideae;Nerieae;Neriinae;Adenium;Adenium_swazicum"
        expected_levels = "subfamily;tribe;subtribe;genus;species"
        tests += [(ranks, expected_levels)]
        ranks = "Apocynoideae;Echiteae;Parsonsiinae;Parsonsia;Parsonsia_heterophylla"
        expected_levels = "subfamily;tribe;subtribe;genus;species"
        tests += [(ranks, expected_levels)]
#        ranks = "Eukaryota;Opisthokonta;Nucletmycea;Fungi;Dikarya;Ascomycota;Saccharomycotina;Saccharomycetes;Saccharomycetales;Metschnikowiaceae;Clavispora;Clavispora lusitaniae ATCC 42720"
        ranks = "Eukaryota;Fungi;Dikarya;Ascomycota;Saccharomycotina;Saccharomycetes;Saccharomycetales;Metschnikowiaceae;Clavispora;Clavispora lusitaniae ATCC 42720"
        expected_levels = "domain;kingdom;subkingdom;phylum;subphylum;class;order;family;genus;species"
        tests += [(ranks, expected_levels)]
        self.check_ranks(tests)
Пример #6
0
    def run_leave_subtree_out_test(self):
        job_name = self.cfg.subst_name("l1out_rank_%NAME%")
        #        if self.jplace_fname:
        #            jp = EpaJsonParser(self.jplace_fname)
        #        else:

        #create file with subtrees
        rank_parent, rank_tips = self.get_parent_tip_ranks(self.tax_tree)

        subtree_list = list(rank_tips.items())
        if len(subtree_list) == 0:
            return 0

        subtree_list_file = self.cfg.tmp_fname("treelist_%NAME%.txt")
        with open(subtree_list_file, "w") as fout:
            for rank_name, tips in subtree_list:
                fout.write("%s\n" % " ".join(tips))

        jp_list = self.raxml.run_epa(job_name,
                                     self.refalign_fname,
                                     self.reftree_fname,
                                     self.optmod_fname,
                                     mode="l1o_subtree",
                                     subtree_fname=subtree_list_file)

        subtree_count = 0
        for jp in jp_list:
            placements = jp.get_placement()
            for place in placements:
                ranks, lws = self.classify_seq(place)
                tax_path = subtree_list[subtree_count][0]
                orig_ranks = Taxonomy.split_rank_uid(tax_path)
                rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks)
                rank_prefix = TaxCode.guess_rank_level_name(
                    orig_ranks, rank_level)[0]
                rank_name = orig_ranks[rank_level]
                if not rank_name.startswith(rank_prefix):
                    rank_name = rank_prefix + rank_name
                parent_ranks = rank_parent[tax_path]
                #                print orig_ranks, "\n", parent_ranks, "\n", ranks, "\n"
                mis_rec = self.check_rank_tax_labels(rank_name, parent_ranks,
                                                     ranks, lws)
                if mis_rec:
                    self.misrank_conf_map[tax_path] = mis_rec['conf']
                subtree_count += 1

        return subtree_count
Пример #7
0
class LeaveOneTest:
    def __init__(self, config):
        self.cfg = config
        
        self.mis_fname = self.cfg.out_fname("%NAME%.mis")
        self.premis_fname = self.cfg.out_fname("%NAME%.premis")
        self.misrank_fname = self.cfg.out_fname("%NAME%.misrank")
        self.stats_fname = self.cfg.out_fname("%NAME%.stats")
        
        if os.path.isfile(self.mis_fname):
            print "\nERROR: Output file already exists: %s" % self.mis_fname
            print "Please specify a different job name using -n or remove old output files."
            self.cfg.exit_user_error()

        self.tmp_refaln = config.tmp_fname("%NAME%.refaln")
        self.reftree_lbl_fname = config.tmp_fname("%NAME%_lbl.tre")
        self.reftree_tax_fname = config.tmp_fname("%NAME%_tax.tre")
        self.optmod_fname = self.cfg.tmp_fname("%NAME%.opt")
        self.reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre")

        self.mislabels = []
        self.mislabels_cnt = []
        self.rank_mislabels = []
        self.rank_mislabels_cnt = []
        self.misrank_conf_map = {}
        
    def write_bid_tax_map(self, bid_tax_map, final):
        if self.cfg.debug:
            fname_suffix = "final" if final else "l1out"
            bid_fname = self.cfg.tmp_fname("%NAME%_" + "bid_tax_map_%s.txt" % fname_suffix)
            with open(bid_fname, "w") as outf:
              for bid, bid_rec in bid_tax_map.iteritems():
                outf.write("%s\t%s\t%d\t%f\n" % (bid, bid_rec[0], bid_rec[1], bid_rec[2]));    

    def write_assignments(self, assign_map, final):
        if self.cfg.debug:
            fname_suffix = "final" if final else "l1out"
            assign_fname = self.cfg.tmp_fname("%NAME%_" + "taxassign_%s.txt" % fname_suffix)
            with open(assign_fname, "w") as outf:
                for seq_name in assign_map.iterkeys():
                    ranks, lws = assign_map[seq_name]
                    outf.write("%s\t%s\t%s\n" % (seq_name, ";".join(ranks), ";".join(["%.3f" % l for l in lws])))

    def load_refjson(self, refjson_fname):
        try:
            self.refjson = RefJsonParser(refjson_fname)
        except ValueError:
            self.cfg.exit_user_error("ERROR: Invalid json file format!")
            
        #validate input json format 
        (valid, err) = self.refjson.validate()
        if not valid:
            self.cfg.log.error("ERROR: Parsing reference JSON file failed:\n%s", err)
            self.cfg.exit_user_error()
        
        self.rate = self.refjson.get_rate()
        self.node_height = self.refjson.get_node_height()
        self.origin_taxonomy = self.refjson.get_origin_taxonomy()
        self.tax_tree = self.refjson.get_tax_tree()
        self.cfg.compress_patterns = self.refjson.get_pattern_compression()

        self.bid_taxonomy_map = self.refjson.get_branch_tax_map()
        if not self.bid_taxonomy_map:
            # old file format (before 1.6), need to rebuild this map from scratch
            th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
            th.set_mf_rooted_tree(self.tax_tree)
            th.set_bf_unrooted_tree(self.refjson.get_reftree())
            self.bid_taxonomy_map = th.get_bid_taxonomy_map()
            
        self.write_bid_tax_map(self.bid_taxonomy_map, final=False)

        reftree_str = self.refjson.get_raxml_readable_tree()
        self.reftree = Tree(reftree_str)
        self.reftree_size = len(self.reftree.get_leaves())

        # IMPORTANT: set EPA heuristic rate based on tree size!                
        self.cfg.resolve_auto_settings(self.reftree_size)
        # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file        
        if self.cfg.epa_load_optmod:
            self.cfg.raxml_model = self.refjson.get_ratehet_model()

        self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, self.rate, self.node_height)
        self.taxtree_helper = TaxTreeHelper(self.cfg, self.origin_taxonomy, self.tax_tree)
        
        tax_code_name = self.refjson.get_taxcode()
        self.tax_code = TaxCode(tax_code_name)
        
        self.taxonomy = Taxonomy(prefix=EpacConfig.REF_SEQ_PREFIX, tax_map=self.origin_taxonomy)
        self.tax_common_ranks = self.taxonomy.get_common_ranks()
#        print "Common ranks: ", self.tax_common_ranks

        self.mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
        self.rank_mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
        
    def run_epa_trainer(self):
        epa_trainer.run_trainer(self.cfg)

        if not os.path.isfile(self.cfg.refjson_fname):
            self.cfg.log.error("\nBuilding reference tree failed, see error messages above.")
            self.cfg.exit_fatal_error()
        
    def classify_seq(self, placement):
        edges = placement["p"]
        if len(edges) > 0:
            return self.classify_helper.classify_seq(edges)
        else:
            print "ERROR: no placements! something is definitely wrong!"

    def check_seq_tax_labels(self, seq_name, orig_ranks, ranks, lws):
        mis_rec = None
        
        num_common_ranks = len(self.tax_common_ranks)
        orig_rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks)
        new_rank_level = Taxonomy.lowest_assigned_rank_level(ranks)
        #if new_rank_level < 0 or (new_rank_level < num_common_ranks and orig_rank_level >= num_common_ranks):
#        if new_rank_level < 0:
        if len(ranks) == 0:
            mis_rec = {}
            mis_rec['name'] = seq_name
            mis_rec['orig_level'] = -1
            mis_rec['real_level'] = 0
            mis_rec['level_name'] = "[NotIngroup]"
            mis_rec['inv_level'] = -1 * mis_rec['real_level']  # just for sorting
            mis_rec['orig_ranks'] = orig_ranks
            mis_rec['ranks'] = []
            mis_rec['lws'] = [1.0]
            mis_rec['conf'] = mis_rec['lws'][0]
        else:
            mislabel_lvl = -1
            min_len = min(len(orig_ranks),len(ranks))
            for rank_lvl in range(min_len):
                if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[rank_lvl] != orig_ranks[rank_lvl]:
                    mislabel_lvl = rank_lvl
                    break

            if mislabel_lvl >= 0:
                real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl)
                mis_rec = {}
                mis_rec['name'] = seq_name
                mis_rec['orig_level'] = mislabel_lvl
                mis_rec['real_level'] = real_lvl
                mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0]
                mis_rec['inv_level'] = -1 * mis_rec['real_level']  # just for sorting
                mis_rec['orig_ranks'] = orig_ranks
                mis_rec['ranks'] = ranks
                mis_rec['lws'] = lws
                mis_rec['conf'] = lws[mislabel_lvl]
    
        if mis_rec:
            self.mislabels.append(mis_rec)
            
        return mis_rec
        
    def filter_mislabels(self):
        filtered_mis = []
        for i in range(len(self.mislabels)):
            if self.mislabels[i]['conf'] >= self.cfg.conf_cutoff:
                filtered_mis.append(self.mislabels[i])
        
        self.mislabels = filtered_mis

    def check_rank_tax_labels(self, rank_name, orig_ranks, ranks, lws):
        mislabel_lvl = -1
        min_len = min(len(orig_ranks),len(ranks))
        for rank_lvl in range(min_len):
            if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[rank_lvl] != orig_ranks[rank_lvl]:
                mislabel_lvl = rank_lvl
                break

        if mislabel_lvl >= 0:
            real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl)
            mis_rec = {}
            mis_rec['name'] = rank_name
            mis_rec['orig_level'] = mislabel_lvl
            mis_rec['real_level'] = real_lvl
            mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0]
            mis_rec['inv_level'] = -1 * real_lvl  # just for sorting
            mis_rec['orig_ranks'] = orig_ranks
            mis_rec['ranks'] = ranks
            mis_rec['lws'] = lws
            mis_rec['conf'] = lws[mislabel_lvl]
            self.rank_mislabels.append(mis_rec)
               
            return mis_rec
        else:
            return None                

    def mis_rec_to_string_old(self, mis_rec):
        lvl = mis_rec['orig_level']
        output = mis_rec['name'] + "\t"
        output += "%s\t%s\t%s\t%.3f\n" % (mis_rec['level_name'], 
            mis_rec['orig_ranks'][lvl], mis_rec['ranks'][lvl], mis_rec['lws'][lvl])
        output += ";".join(mis_rec['orig_ranks']) + "\n"
        output += ";".join(mis_rec['ranks']) + "\n"
        output += "\t".join(["%.3f" % conf for conf in mis_rec['lws']]) + "\n"
        return output

    def mis_rec_to_string(self, mis_rec):
        lvl = mis_rec['orig_level']
        uncorr_name = EpacConfig.strip_ref_prefix(self.refjson.get_uncorr_seqid(mis_rec['name']))
        uncorr_orig_ranks = self.refjson.get_uncorr_ranks(mis_rec['orig_ranks'])
        uncorr_ranks = self.refjson.get_uncorr_ranks(mis_rec['ranks'])
        output = uncorr_name + "\t"
      
        if lvl >= 0:
            output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'], 
                uncorr_orig_ranks[lvl], uncorr_ranks[lvl], mis_rec['lws'][lvl])
        else:
            output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'], 
                "NA", "NA", mis_rec['lws'][0])
        
        output += Taxonomy.lineage_str(uncorr_orig_ranks) + "\t"
        output += Taxonomy.lineage_str(uncorr_ranks) + "\t"
        output += ";".join(["%.3f" % conf for conf in mis_rec['lws']])
        if 'rank_conf' in mis_rec:
            output += "\t%.3f" % mis_rec['rank_conf']
        return output

    def sort_mislabels(self):
        self.mislabels = sorted(self.mislabels, key=itemgetter('inv_level', 'conf', 'name'), reverse=True)
        for mis_rec in self.mislabels:
            real_lvl = mis_rec["real_level"]
            self.mislabels_cnt[real_lvl] += 1
        
        if self.cfg.ranktest:
            self.rank_mislabels = sorted(self.rank_mislabels, key=itemgetter('inv_level', 'conf', 'name'), reverse=True)
            for mis_rec in self.rank_mislabels:
                real_lvl = mis_rec["real_level"]
                self.rank_mislabels_cnt[real_lvl] += 1
    
    def write_stats(self, toFile=False):
        self.cfg.log.info("Mislabeled sequences by rank:")
        seq_sum = 0
        rank_sum = 0
        stats = []
        for i in range(len(self.mislabels_cnt)):
            if i > 0:
                rname = self.tax_code.rank_level_name(i)[0].ljust(12)
            else:
                rname = "[NotIngroup]"
            if self.mislabels_cnt[i] > 0:
                seq_sum += self.mislabels_cnt[i]
#                    output = "%s:\t%d" % (rname, seq_sum)
                output = "%s:\t%d" % (rname, self.mislabels_cnt[i])
                if self.cfg.ranktest:
                    rank_sum += self.rank_mislabels_cnt[i]
                    output += "\t%d" % rank_sum
                self.cfg.log.info(output) 
                stats.append(output)

        if toFile:
            with open(self.stats_fname, "w") as fo_stat:
                for line in stats:
                    fo_stat.write(line + "\n")
    
    def write_mislabels(self, final=True):
        if final:
            out_fname = self.mis_fname
        else:
            out_fname = self.premis_fname
        
        with open(out_fname, "w") as fo_all:
            fields = ["SeqID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath", "PerRankConfidence"]
            if self.cfg.ranktest:
                fields += ["HigherRankMisplacedConfidence"]
            header = ";" + "\t".join(fields) + "\n"
            fo_all.write(header)
            if self.cfg.verbose and len(self.mislabels) > 0 and final:
                print "Mislabeled sequences:\n"
                print header 
            for mis_rec in self.mislabels:
                output = self.mis_rec_to_string(mis_rec)  + "\n"
                fo_all.write(output)
                if self.cfg.verbose and final:
                    print(output) 
                    
        if not final:
            return

        if self.cfg.ranktest:
            with open(self.misrank_fname, "w") as fo_all:
                fields = ["RankID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath", "PerRankConfidence"]
                header = ";" + "\t".join(fields)  + "\n"
                fo_all.write(header)
                if self.cfg.verbose  and len(self.rank_mislabels) > 0:
                    print "\nMislabeled higher ranks:\n"
                    print header 
                for mis_rec in self.rank_mislabels:
                    output = self.mis_rec_to_string(mis_rec) + "\n"
                    fo_all.write(output)
                    if self.cfg.verbose:
                        print(output) 
                        
        self.write_stats()
   
    def run_leave_subtree_out_test(self):
        job_name = self.cfg.subst_name("l1out_rank_%NAME%")
#        if self.jplace_fname:
#            jp = EpaJsonParser(self.jplace_fname)
#        else:        

        #create file with subtrees
        rank_tips = {}
        rank_parent = {}
        for node in self.tax_tree.traverse("postorder"):
            if node.is_leaf() or node.is_root():
                continue
            tax_path = node.name
            ranks = Taxonomy.split_rank_uid(tax_path)
            rank_lvl = Taxonomy.lowest_assigned_rank_level(ranks)
            if rank_lvl < 2:
                continue
                
            parent_ranks = Taxonomy.split_rank_uid(node.up.name)
            parent_lvl = Taxonomy.lowest_assigned_rank_level(parent_ranks)
            if parent_lvl < 1:
                continue
            
            rank_seqs = node.get_leaf_names()
            rank_size = len(rank_seqs)
            if rank_size < 2 or rank_size > self.reftree_size-4:
                continue

#            print rank_lvl, "\t", tax_path, "\t", rank_seqs, "\n"
            rank_tips[tax_path] = node.get_leaf_names()
            rank_parent[tax_path] = parent_ranks
                
        subtree_list = rank_tips.items()
        
        if len(subtree_list) == 0:
            return 0
            
        subtree_list_file = self.cfg.tmp_fname("treelist_%NAME%.txt")
        with open(subtree_list_file, "w") as fout:
            for rank_name, tips in subtree_list:
                fout.write("%s\n" % " ".join(tips))
        
        jp_list = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname, 
            mode="l1o_subtree", subtree_fname=subtree_list_file)

        subtree_count = 0
        for jp in jp_list:
            placements = jp.get_placement()
            for place in placements:
                ranks, lws = self.classify_seq(place)
                tax_path = subtree_list[subtree_count][0]
                orig_ranks = Taxonomy.split_rank_uid(tax_path)
                rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks)
                rank_prefix = self.guess_rank_level_name(orig_ranks, rank_level)[0]
                rank_name = orig_ranks[rank_level]
                if not rank_name.startswith(rank_prefix):
                    rank_name = rank_prefix + rank_name
                parent_ranks = rank_parent[tax_path]
#                print orig_ranks, "\n", parent_ranks, "\n", ranks, "\n"
                mis_rec = self.check_rank_tax_labels(rank_name, parent_ranks, ranks, lws)
                if mis_rec:
                    self.misrank_conf_map[tax_path] = mis_rec['conf']
                subtree_count += 1

        return subtree_count    
        
    def run_leave_seq_out_test(self):
        job_name = self.cfg.subst_name("l1out_seq_%NAME%")
        placements = []
        if self.cfg.jplace_fname:
            if os.path.isdir(self.cfg.jplace_fname):
                jplace_fmask = os.path.join(self.cfg.jplace_fname, '*.jplace')
            else:
                jplace_fmask = self.cfg.jplace_fname

            jplace_fname_list = glob.glob(jplace_fmask)
            for jplace_fname in jplace_fname_list:
                jp = EpaJsonParser(jplace_fname)
                placements += jp.get_placement()
                
            config.log.debug("Loaded %d placements from %s\n", len(placements), jplace_fmask)
        else:        
            jp = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname, mode="l1o_seq")
            placements = jp.get_placement()
            if self.cfg.output_interim_files:
                out_jplace_fname = self.cfg.out_fname("%NAME%.l1out_seq.jplace")
                self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True, mode="l1o_seq")
        
        seq_count = 0
        l1out_ass = {}
        for place in placements:
            seq_name = place["n"][0]
            
            # get original taxonomic label
#            orig_ranks = self.get_orig_ranks(seq_name)
            orig_ranks =  self.taxtree_helper.get_seq_ranks_from_tree(seq_name)

            # get EPA tax label
            ranks, lws = self.classify_seq(place)
            l1out_ass[seq_name] = (ranks, lws)
            
            # check if they match
            mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws)
            # cross-check with higher rank mislabels
            if self.cfg.ranktest and mis_rec:
                rank_conf = 0
                for lvl in range(2,len(orig_ranks)):
                    tax_path = Taxonomy.get_rank_uid(orig_ranks, lvl)
                    if tax_path in self.misrank_conf_map:
                        rank_conf = max(rank_conf, self.misrank_conf_map[tax_path])
                mis_rec['rank_conf'] = rank_conf
            seq_count += 1

        self.write_assignments(l1out_ass, final=False)
            
        return seq_count    
        
    def run_final_epa_test(self):
        self.reftree_outgroup = self.refjson.get_outgroup()

        tmp_reftree = self.reftree.copy(method="newick") 
        name2refnode = {}
        for leaf in tmp_reftree.iter_leaves():
            name2refnode[leaf.name] = leaf        

        tmp_taxtree = self.tax_tree.copy(method="newick") 
        name2taxnode = {}
        for leaf in tmp_taxtree.iter_leaves():
            name2taxnode[leaf.name] = leaf        

        for mis_rec in self.mislabels:
            rname = mis_rec['name']
#            rname = EpacConfig.REF_SEQ_PREFIX + name

            if rname in name2refnode:
                name2refnode[rname].delete()
            else:
                print "Node not found in the reference tree: %s" % rname

            if rname in name2taxnode:
                name2taxnode[rname].delete()
            else:
                print "Node not found in the taxonomic tree: %s" % rname

        # remove unifurcation at the root
        if len(tmp_reftree.children) == 1:
            tmp_reftree = tmp_reftree.children[0]
            
        self.mislabels = []

        th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
        th.set_mf_rooted_tree(tmp_taxtree)
            
        epa_result = self.run_epa_once(tmp_reftree)
        
        reftree_epalbl_str = epa_result.get_std_newick_tree()        
        placements = epa_result.get_placement()
        
        # update branchid-taxonomy mapping to account for possible changes in branch numbering
        reftree_tax = Tree(reftree_epalbl_str)
        th.set_bf_unrooted_tree(reftree_tax)
        bid_tax_map = th.get_bid_taxonomy_map()
        
        self.write_bid_tax_map(bid_tax_map, final=True)

        cl = TaxClassifyHelper(self.cfg, bid_tax_map, self.rate, self.node_height)
        
#        newtax_fname = self.cfg.subst_name("newtax_%NAME%.tre")
#        th.get_tax_tree().write(outfile=newtax_fname, format=3)

        final_ass = {}
        for place in placements:
            seq_name = place["n"][0]

            # get original taxonomic label
            orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name)

            # EXPERIMENTAL FEATURE - disabled for now!
            # It could happen that certain ranks were present in the "original" reference tree, but 
            # are completely missing in the pruned tree (e.g., all seqs of a species were considered "suspicious" 
            # after the leave-one-out test and thus pruned)
            # In this case, EPA has no chance to infer full original taxonomic annotation (=species) since the corresponding clade
            # is now missing. To account for this fact, we amend the original taxonomic annotation and set ranks missing from  
            # pruned tree to "Undefined".
#            orig_ranks = th.strip_missing_ranks(orig_ranks)
#            print orig_ranks

            # get EPA tax label
            ranks, lws = cl.classify_seq(place["p"])
            final_ass[seq_name] = (ranks, lws)

            #print seq_name, ": ", orig_ranks, "--->", ranks

            # check if they match
            mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws)

        self.write_assignments(final_ass, final=True)

    def run_epa_once(self, reftree):
        reftree_fname = self.cfg.tmp_fname("final_ref_%NAME%.tre")
        job_name = self.cfg.subst_name("final_epa_%NAME%")

        reftree.write(outfile=reftree_fname)

        # IMPORTANT: don't load the model, since it's invalid for the pruned true !!! 
        optmod_fname=""
        epa_result = self.raxml.run_epa(job_name, self.refalign_fname, reftree_fname, optmod_fname)

        if self.cfg.output_interim_files:
            out_jplace_fname = self.cfg.out_fname("%NAME%.final_epa.jplace")
            self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True)

        return epa_result

    def run_test(self):
        self.raxml = RaxmlWrapper(self.cfg)

#        config.log.info("Number of sequences in the reference: %d\n", self.reftree_size)

        self.refjson.get_raxml_readable_tree(self.reftree_fname)
        self.refalign_fname = self.refjson.get_alignment(self.tmp_refaln)        
        self.refjson.get_binary_model(self.optmod_fname)
        
        if self.cfg.ranktest:
            config.log.info("Running the leave-one-rank-out test...\n")
            subtree_count = self.run_leave_subtree_out_test()
            
        config.log.info("Running the leave-one-sequence-out test...\n")
        self.run_leave_seq_out_test()

        if len(self.mislabels) > 0:
            config.log.info("Leave-one-out test identified %d suspicious sequences; running final EPA test to check them...\n", len(self.mislabels))
            if self.cfg.debug:
                self.write_mislabels(final=False)
            self.run_final_epa_test()

        self.filter_mislabels()
        self.sort_mislabels()
        self.write_mislabels()
        config.log.info("\nTotal mislabels: %d / %.2f %%", len(self.mislabels), (float(len(self.mislabels)) / self.reftree_size * 100))
Пример #8
0
class LeaveOneTest:
    def __init__(self, config):
        self.cfg = config

        self.mis_fname = self.cfg.out_fname("%NAME%.mis")
        self.premis_fname = self.cfg.out_fname("%NAME%.premis")
        self.misrank_fname = self.cfg.out_fname("%NAME%.misrank")
        self.stats_fname = self.cfg.out_fname("%NAME%.stats")

        if os.path.isfile(self.mis_fname):
            print("\nERROR: Output file already exists: %s" % self.mis_fname)
            print(
                "Please specify a different job name using -n or remove old output files."
            )
            self.cfg.exit_user_error()

        self.tmp_refaln = config.tmp_fname("%NAME%.refaln")
        self.reftree_lbl_fname = config.tmp_fname("%NAME%_lbl.tre")
        self.reftree_tax_fname = config.tmp_fname("%NAME%_tax.tre")
        self.optmod_fname = self.cfg.tmp_fname("%NAME%.opt")
        self.reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre")

        self.mislabels = []
        self.mislabels_cnt = []
        self.rank_mislabels = []
        self.rank_mislabels_cnt = []
        self.misrank_conf_map = {}

    def write_bid_tax_map(self, bid_tax_map, final):
        if self.cfg.debug:
            fname_suffix = "final" if final else "l1out"
            bid_fname = self.cfg.tmp_fname("%NAME%_" +
                                           "bid_tax_map_%s.txt" % fname_suffix)
            with open(bid_fname, "w") as outf:
                for bid, bid_rec in bid_tax_map.items():
                    outf.write("%s\t%s\t%d\t%f\n" %
                               (bid, bid_rec[0], bid_rec[1], bid_rec[2]))

    def write_assignments(self, assign_map, final):
        if self.cfg.debug:
            fname_suffix = "final" if final else "l1out"
            assign_fname = self.cfg.tmp_fname("%NAME%_" + "taxassign_%s.txt" %
                                              fname_suffix)
            with open(assign_fname, "w") as outf:
                for seq_name in assign_map.keys():
                    ranks, lws = assign_map[seq_name]
                    outf.write("%s\t%s\t%s\n" %
                               (seq_name, ";".join(ranks), ";".join(
                                   ["%.3f" % l for l in lws])))

    def load_refjson(self, refjson_fname):
        try:
            self.refjson = RefJsonParser(refjson_fname)
        except ValueError:
            self.cfg.exit_user_error("ERROR: Invalid json file format!")

        #validate input json format
        (valid, err) = self.refjson.validate()
        if not valid:
            self.cfg.log.error(
                "ERROR: Parsing reference JSON file failed:\n%s", err)
            self.cfg.exit_user_error()

        self.rate = self.refjson.get_rate()
        self.node_height = self.refjson.get_node_height()
        self.origin_taxonomy = self.refjson.get_origin_taxonomy()
        self.tax_tree = self.refjson.get_tax_tree()
        self.cfg.compress_patterns = self.refjson.get_pattern_compression()

        self.bid_taxonomy_map = self.refjson.get_branch_tax_map()
        if not self.bid_taxonomy_map:
            # old file format (before 1.6), need to rebuild this map from scratch
            th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
            th.set_mf_rooted_tree(self.tax_tree)
            th.set_bf_unrooted_tree(self.refjson.get_reftree())
            self.bid_taxonomy_map = th.get_bid_taxonomy_map()

        self.write_bid_tax_map(self.bid_taxonomy_map, final=False)

        reftree_str = self.refjson.get_raxml_readable_tree()
        self.reftree = Tree(reftree_str)
        self.reftree_size = len(self.reftree.get_leaves())

        # IMPORTANT: set EPA heuristic rate based on tree size!
        self.cfg.resolve_auto_settings(self.reftree_size)
        # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file
        if self.cfg.epa_load_optmod:
            self.cfg.raxml_model = self.refjson.get_ratehet_model()

        self.classify_helper = TaxClassifyHelper(self.cfg,
                                                 self.bid_taxonomy_map,
                                                 self.rate, self.node_height)
        self.taxtree_helper = TaxTreeHelper(self.cfg, self.origin_taxonomy,
                                            self.tax_tree)

        tax_code_name = self.refjson.get_taxcode()
        self.tax_code = TaxCode(tax_code_name)

        self.taxonomy = Taxonomy(prefix=EpacConfig.REF_SEQ_PREFIX,
                                 tax_map=self.origin_taxonomy)
        self.tax_common_ranks = self.taxonomy.get_common_ranks()
        #        print "Common ranks: ", self.tax_common_ranks

        self.mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
        self.rank_mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS

    def run_epa_trainer(self):
        epa_trainer.run_trainer(self.cfg)

        if not os.path.isfile(self.cfg.refjson_fname):
            self.cfg.log.error(
                "\nBuilding reference tree failed, see error messages above.")
            self.cfg.exit_fatal_error()

    def classify_seq(self, placement):
        edges = placement["p"]
        if len(edges) > 0:
            return self.classify_helper.classify_seq(edges)
        else:
            print("ERROR: no placements! something is definitely wrong!")

    def check_seq_tax_labels(self, seq_name, orig_ranks, ranks, lws):
        mis_rec = None

        num_common_ranks = len(self.tax_common_ranks)
        orig_rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks)
        new_rank_level = Taxonomy.lowest_assigned_rank_level(ranks)
        #if new_rank_level < 0 or (new_rank_level < num_common_ranks and orig_rank_level >= num_common_ranks):
        #        if new_rank_level < 0:
        if len(ranks) == 0:
            mis_rec = {}
            mis_rec['name'] = seq_name
            mis_rec['orig_level'] = -1
            mis_rec['real_level'] = 0
            mis_rec['level_name'] = "[NotIngroup]"
            mis_rec['inv_level'] = -1 * mis_rec[
                'real_level']  # just for sorting
            mis_rec['orig_ranks'] = orig_ranks
            mis_rec['ranks'] = []
            mis_rec['lws'] = [1.0]
            mis_rec['conf'] = mis_rec['lws'][0]
        else:
            mislabel_lvl = -1
            min_len = min(len(orig_ranks), len(ranks))
            for rank_lvl in range(min_len):
                if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[
                        rank_lvl] != orig_ranks[rank_lvl]:
                    mislabel_lvl = rank_lvl
                    break

            if mislabel_lvl >= 0:
                real_lvl = self.tax_code.guess_rank_level(
                    orig_ranks, mislabel_lvl)
                mis_rec = {}
                mis_rec['name'] = seq_name
                mis_rec['orig_level'] = mislabel_lvl
                mis_rec['real_level'] = real_lvl
                mis_rec['level_name'] = self.tax_code.rank_level_name(
                    real_lvl)[0]
                mis_rec['inv_level'] = -1 * mis_rec[
                    'real_level']  # just for sorting
                mis_rec['orig_ranks'] = orig_ranks
                mis_rec['ranks'] = ranks
                mis_rec['lws'] = lws
                mis_rec['conf'] = lws[mislabel_lvl]

        if mis_rec:
            self.mislabels.append(mis_rec)

        return mis_rec

    def filter_mislabels(self):
        filtered_mis = []
        for i in range(len(self.mislabels)):
            if self.mislabels[i]['conf'] >= self.cfg.conf_cutoff:
                filtered_mis.append(self.mislabels[i])

        self.mislabels = filtered_mis

    def check_rank_tax_labels(self, rank_name, orig_ranks, ranks, lws):
        mislabel_lvl = -1
        min_len = min(len(orig_ranks), len(ranks))
        for rank_lvl in range(min_len):
            if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[
                    rank_lvl] != orig_ranks[rank_lvl]:
                mislabel_lvl = rank_lvl
                break

        if mislabel_lvl >= 0:
            real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl)
            mis_rec = {}
            mis_rec['name'] = rank_name
            mis_rec['orig_level'] = mislabel_lvl
            mis_rec['real_level'] = real_lvl
            mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0]
            mis_rec['inv_level'] = -1 * real_lvl  # just for sorting
            mis_rec['orig_ranks'] = orig_ranks
            mis_rec['ranks'] = ranks
            mis_rec['lws'] = lws
            mis_rec['conf'] = lws[mislabel_lvl]
            self.rank_mislabels.append(mis_rec)

            return mis_rec
        else:
            return None

    def mis_rec_to_string_old(self, mis_rec):
        lvl = mis_rec['orig_level']
        output = mis_rec['name'] + "\t"
        output += "%s\t%s\t%s\t%.3f\n" % (
            mis_rec['level_name'], mis_rec['orig_ranks'][lvl],
            mis_rec['ranks'][lvl], mis_rec['lws'][lvl])
        output += ";".join(mis_rec['orig_ranks']) + "\n"
        output += ";".join(mis_rec['ranks']) + "\n"
        output += "\t".join(["%.3f" % conf for conf in mis_rec['lws']]) + "\n"
        return output

    def mis_rec_to_string(self, mis_rec):
        lvl = mis_rec['orig_level']
        uncorr_name = EpacConfig.strip_ref_prefix(
            self.refjson.get_uncorr_seqid(mis_rec['name']))
        uncorr_orig_ranks = self.refjson.get_uncorr_ranks(
            mis_rec['orig_ranks'])
        uncorr_ranks = self.refjson.get_uncorr_ranks(mis_rec['ranks'])
        output = uncorr_name + "\t"

        if lvl >= 0:
            output += "%s\t%s\t%s\t%.3f\t" % (
                mis_rec['level_name'], uncorr_orig_ranks[lvl],
                uncorr_ranks[lvl], mis_rec['lws'][lvl])
        else:
            output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'], "NA",
                                              "NA", mis_rec['lws'][0])

        output += Taxonomy.lineage_str(uncorr_orig_ranks) + "\t"
        output += Taxonomy.lineage_str(uncorr_ranks) + "\t"
        output += ";".join(["%.3f" % conf for conf in mis_rec['lws']])
        if 'rank_conf' in mis_rec:
            output += "\t%.3f" % mis_rec['rank_conf']
        return output

    def sort_mislabels(self):
        self.mislabels = sorted(self.mislabels,
                                key=itemgetter('inv_level', 'conf', 'name'),
                                reverse=True)
        for mis_rec in self.mislabels:
            real_lvl = mis_rec["real_level"]
            self.mislabels_cnt[real_lvl] += 1

        if self.cfg.ranktest:
            self.rank_mislabels = sorted(self.rank_mislabels,
                                         key=itemgetter(
                                             'inv_level', 'conf', 'name'),
                                         reverse=True)
            for mis_rec in self.rank_mislabels:
                real_lvl = mis_rec["real_level"]
                self.rank_mislabels_cnt[real_lvl] += 1

    def write_stats(self, toFile=False):
        self.cfg.log.info("Mislabeled sequences by rank:")
        seq_sum = 0
        rank_sum = 0
        stats = []
        for i in range(len(self.mislabels_cnt)):
            if i > 0:
                rname = self.tax_code.rank_level_name(i)[0].ljust(12)
            else:
                rname = "[NotIngroup]"
            if self.mislabels_cnt[i] > 0:
                seq_sum += self.mislabels_cnt[i]
                #                    output = "%s:\t%d" % (rname, seq_sum)
                output = "%s:\t%d" % (rname, self.mislabels_cnt[i])
                if self.cfg.ranktest:
                    rank_sum += self.rank_mislabels_cnt[i]
                    output += "\t%d" % rank_sum
                self.cfg.log.info(output)
                stats.append(output)

        if toFile:
            with open(self.stats_fname, "w") as fo_stat:
                for line in stats:
                    fo_stat.write(line + "\n")

    def write_mislabels_header(self, fo, final, fields):
        header = ";" + "\t".join(fields) + "\n"

        # write to file
        if final:
            for line in DISCLAIMER.split("\n"):
                fo.write(";%s\n" % line)
            fo.write(";\n")
        fo.write(header)

        # print to console
        if final and self.cfg.verbose and len(self.rank_mislabels) > 0:
            print(DISCLAIMER, "\n")
            print("Mislabeled sequences:\n")
            print(header)

    def write_rank_mislabels(self, final=True):
        if not self.cfg.ranktest:
            return

        with open(self.misrank_fname, "w") as fo_all:
            fields = [
                "RankID", "MislabeledLevel", "OriginalLabel", "ProposedLabel",
                "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath",
                "PerRankConfidence"
            ]
            self.write_mislabels_header(fo_all, final, fields)
            for mis_rec in self.rank_mislabels:
                output = self.mis_rec_to_string(mis_rec) + "\n"
                fo_all.write(output)
                if self.cfg.verbose:
                    print(output)

    def write_mislabels(self, final=True):
        if final:
            out_fname = self.mis_fname
        else:
            out_fname = self.premis_fname

        with open(out_fname, "w") as fo_all:
            fields = [
                "SeqID", "MislabeledLevel", "OriginalLabel", "ProposedLabel",
                "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath",
                "PerRankConfidence"
            ]
            if self.cfg.ranktest:
                fields += ["HigherRankMisplacedConfidence"]
            self.write_mislabels_header(fo_all, final, fields)
            for mis_rec in self.mislabels:
                output = self.mis_rec_to_string(mis_rec) + "\n"
                fo_all.write(output)
                if self.cfg.verbose and final:
                    print(output)

        if final:
            self.write_rank_mislabels()
            self.write_stats()

    def get_parent_tip_ranks(self, tax_tree):
        rank_tips = {}
        rank_parent = {}
        for node in tax_tree.traverse("postorder"):
            if node.is_leaf() or node.is_root():
                continue
            tax_path = node.name
            ranks = Taxonomy.split_rank_uid(tax_path)
            rank_lvl = Taxonomy.lowest_assigned_rank_level(ranks)
            if rank_lvl < 2:
                continue

            parent_ranks = Taxonomy.split_rank_uid(node.up.name)
            parent_lvl = Taxonomy.lowest_assigned_rank_level(parent_ranks)
            if parent_lvl < 1:
                continue

            rank_seqs = node.get_leaf_names()
            rank_size = len(rank_seqs)
            if rank_size < 2 or rank_size > self.reftree_size - 4:
                continue


#            print rank_lvl, "\t", tax_path, "\t", rank_seqs, "\n"
            rank_tips[tax_path] = node.get_leaf_names()
            rank_parent[tax_path] = parent_ranks

        return rank_parent, rank_tips

    def run_leave_subtree_out_test(self):
        job_name = self.cfg.subst_name("l1out_rank_%NAME%")
        #        if self.jplace_fname:
        #            jp = EpaJsonParser(self.jplace_fname)
        #        else:

        #create file with subtrees
        rank_parent, rank_tips = self.get_parent_tip_ranks(self.tax_tree)

        subtree_list = list(rank_tips.items())
        if len(subtree_list) == 0:
            return 0

        subtree_list_file = self.cfg.tmp_fname("treelist_%NAME%.txt")
        with open(subtree_list_file, "w") as fout:
            for rank_name, tips in subtree_list:
                fout.write("%s\n" % " ".join(tips))

        jp_list = self.raxml.run_epa(job_name,
                                     self.refalign_fname,
                                     self.reftree_fname,
                                     self.optmod_fname,
                                     mode="l1o_subtree",
                                     subtree_fname=subtree_list_file)

        subtree_count = 0
        for jp in jp_list:
            placements = jp.get_placement()
            for place in placements:
                ranks, lws = self.classify_seq(place)
                tax_path = subtree_list[subtree_count][0]
                orig_ranks = Taxonomy.split_rank_uid(tax_path)
                rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks)
                rank_prefix = self.tax_code.guess_rank_level_name(
                    orig_ranks, rank_level)[0]
                rank_name = orig_ranks[rank_level]
                if not rank_name.startswith(rank_prefix):
                    rank_name = rank_prefix + rank_name
                parent_ranks = rank_parent[tax_path]
                #                print orig_ranks, "\n", parent_ranks, "\n", ranks, "\n"
                mis_rec = self.check_rank_tax_labels(rank_name, parent_ranks,
                                                     ranks, lws)
                if mis_rec:
                    self.misrank_conf_map[tax_path] = mis_rec['conf']
                subtree_count += 1

        return subtree_count

    def run_leave_seq_out_test(self):
        job_name = self.cfg.subst_name("l1out_seq_%NAME%")
        placements = []
        if self.cfg.jplace_fname:
            if os.path.isdir(self.cfg.jplace_fname):
                jplace_fmask = os.path.join(self.cfg.jplace_fname, '*.jplace')
            else:
                jplace_fmask = self.cfg.jplace_fname

            jplace_fname_list = glob.glob(jplace_fmask)
            for jplace_fname in jplace_fname_list:
                jp = EpaJsonParser(jplace_fname)
                placements += jp.get_placement()

            config.log.debug("Loaded %d placements from %s\n", len(placements),
                             jplace_fmask)
        else:
            jp = self.raxml.run_epa(job_name,
                                    self.refalign_fname,
                                    self.reftree_fname,
                                    self.optmod_fname,
                                    mode="l1o_seq")
            placements = jp.get_placement()
            if self.cfg.output_interim_files:
                out_jplace_fname = self.cfg.out_fname(
                    "%NAME%.l1out_seq.jplace")
                self.raxml.copy_epa_jplace(job_name,
                                           out_jplace_fname,
                                           move=True,
                                           mode="l1o_seq")

        seq_count = 0
        l1out_ass = {}
        for place in placements:
            seq_name = place["n"][0]

            # get original taxonomic label
            #            orig_ranks = self.get_orig_ranks(seq_name)
            orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name)

            # get EPA tax label
            ranks, lws = self.classify_seq(place)
            l1out_ass[seq_name] = (ranks, lws)

            # check if they match
            mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks,
                                                lws)
            # cross-check with higher rank mislabels
            if self.cfg.ranktest and mis_rec:
                rank_conf = 0
                for lvl in range(2, len(orig_ranks)):
                    tax_path = Taxonomy.get_rank_uid(orig_ranks, lvl)
                    if tax_path in self.misrank_conf_map:
                        rank_conf = max(rank_conf,
                                        self.misrank_conf_map[tax_path])
                mis_rec['rank_conf'] = rank_conf
            seq_count += 1

        self.write_assignments(l1out_ass, final=False)

        return seq_count

    def prune_mislabels_from_tree(self, src_tree, tree_name):
        pruned_tree = src_tree.copy(method="newick")
        name2node = {}
        for leaf in pruned_tree.iter_leaves():
            name2node[leaf.name] = leaf

        for mis_rec in self.mislabels:
            rname = mis_rec['name']
            #            rname = EpacConfig.REF_SEQ_PREFIX + name

            if rname in name2node:
                name2node[rname].delete()
            else:
                config.log.debug("Node not found in the %s tree: %s" %
                                 (tree_name, rname))

        return pruned_tree

    def run_final_epa_test(self):
        self.reftree_outgroup = self.refjson.get_outgroup()

        pruned_reftree = self.prune_mislabels_from_tree(
            self.reftree, "reference")
        pruned_taxtree = self.prune_mislabels_from_tree(
            self.reftree, "taxonomic")

        # remove unifurcation at the root
        if len(pruned_reftree.children) == 1:
            pruned_reftree = pruned_reftree.children[0]

        self.mislabels = []

        th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
        th.set_mf_rooted_tree(pruned_taxtree)

        reftree_epalbl_str = None
        if self.cfg.final_jplace_fname:
            if os.path.isdir(self.cfg.final_jplace_fname):
                jplace_fmask = os.path.join(self.cfg.final_jplace_fname,
                                            '*.jplace')
            else:
                jplace_fmask = self.cfg.final_jplace_fname

            jplace_fname_list = glob.glob(jplace_fmask)
            placements = []
            for jplace_fname in jplace_fname_list:
                jp = EpaJsonParser(jplace_fname)
                placements += jp.get_placement()
                if not reftree_epalbl_str:
                    reftree_epalbl_str = jp.get_std_newick_tree()

            config.log.debug("Loaded %d final epa placements from %s\n",
                             len(placements), jplace_fmask)
        else:
            epa_result = self.run_epa_once(pruned_reftree)
            reftree_epalbl_str = epa_result.get_std_newick_tree()
            placements = epa_result.get_placement()

        # update branchid-taxonomy mapping to account for possible changes in branch numbering
        reftree_tax = Tree(reftree_epalbl_str)
        th.set_bf_unrooted_tree(reftree_tax)
        bid_tax_map = th.get_bid_taxonomy_map()

        self.write_bid_tax_map(bid_tax_map, final=True)

        cl = TaxClassifyHelper(self.cfg, bid_tax_map, self.rate,
                               self.node_height)

        #        newtax_fname = self.cfg.subst_name("newtax_%NAME%.tre")
        #        th.get_tax_tree().write(outfile=newtax_fname, format=3)

        final_ass = {}
        for place in placements:
            seq_name = place["n"][0]

            # get original taxonomic label
            orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name)

            # EXPERIMENTAL FEATURE - disabled for now!
            # It could happen that certain ranks were present in the "original" reference tree, but
            # are completely missing in the pruned tree (e.g., all seqs of a species were considered "suspicious"
            # after the leave-one-out test and thus pruned)
            # In this case, EPA has no chance to infer full original taxonomic annotation (=species) since the corresponding clade
            # is now missing. To account for this fact, we amend the original taxonomic annotation and set ranks missing from
            # pruned tree to "Undefined".
            #            orig_ranks = th.strip_missing_ranks(orig_ranks)
            #            print orig_ranks

            # get EPA tax label
            ranks, lws = cl.classify_seq(place["p"])
            final_ass[seq_name] = (ranks, lws)

            #print seq_name, ": ", orig_ranks, "--->", ranks

            # check if they match
            mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks,
                                                lws)

        self.write_assignments(final_ass, final=True)

    def run_epa_once(self, reftree):
        reftree_fname = self.cfg.tmp_fname("final_ref_%NAME%.tre")
        job_name = self.cfg.subst_name("final_epa_%NAME%")

        reftree.write(outfile=reftree_fname)

        # IMPORTANT: don't load the model, since it's invalid for the pruned true !!!
        optmod_fname = ""
        epa_result = self.raxml.run_epa(job_name, self.refalign_fname,
                                        reftree_fname, optmod_fname)

        if self.cfg.output_interim_files:
            out_jplace_fname = self.cfg.out_fname("%NAME%.final_epa.jplace")
            self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True)

        return epa_result

    def run_test(self):
        self.raxml = RaxmlWrapper(self.cfg)

        #        config.log.info("Number of sequences in the reference: %d\n", self.reftree_size)

        self.refjson.get_raxml_readable_tree(self.reftree_fname)
        self.refalign_fname = self.refjson.get_alignment(self.tmp_refaln)
        self.refjson.get_binary_model(self.optmod_fname)

        if self.cfg.ranktest:
            config.log.info("Running the leave-one-rank-out test...\n")
            subtree_count = self.run_leave_subtree_out_test()

        config.log.info("Running the leave-one-sequence-out test...\n")
        self.run_leave_seq_out_test()

        if len(self.mislabels) > 0:
            config.log.info(
                "Leave-one-out test identified %d suspicious sequences; running final EPA test to check them...\n",
                len(self.mislabels))
            if self.cfg.debug:
                self.write_mislabels(final=False)
            self.run_final_epa_test()

        self.filter_mislabels()
        self.sort_mislabels()
        self.write_mislabels()
        config.log.info("\nTotal mislabels: %d / %.2f %%", len(self.mislabels),
                        (float(len(self.mislabels)) / self.reftree_size * 100))