Пример #1
0
    def __init__(self, size=None, position=None, lambda_=None, theta=None,
                sigma=None, phase=None, trim=None, contrast=0.5, width=1, hide_dot=False):

        if not isinstance(np, ModuleType):
            message = """GaborPatch can not be initialized.
The Python package 'Numpy' is not installed."""
            raise ImportError(message)

        if not isinstance(pyplot, ModuleType):
            message = """GaborPatch can not be initialized.
The Python package 'Matplotlib' is not installed."""
            raise ImportError(message)

        fid, filename = tempfile.mkstemp(
                    dir=stimuli.defaults.tempdir,
                    suffix=".png")
        os.close(fid)
        Picture.__init__(self, filename, position)

        size = 200
        diameter = 50
        line_width = 20 * width
        inner_diameter = 5 * (int(hide_dot)-1)

        fig = plt.figure(frameon=False, figsize=(1, 1))
        ax = plt.Axes(fig, [0., 0., 1., 1.])
        ax.set_axis_off()
        fig.add_axes(ax)
        pixel_map = np.zeros((size, size))
        ax.imshow(pixel_map, cmap=plt.get_cmap('gray'))
        ax.add_patch(plt.Circle((size / 2, size / 2), diameter, color='w'))
        ax.add_patch(plt.Rectangle((size / 2 - line_width / 2, 0), line_width, size, color='k'))
        ax.add_patch(plt.Rectangle((0, size / 2 - line_width / 2), size, line_width, color='k'))
        ax.add_patch(plt.Circle((size / 2, size / 2), inner_diameter, color='w'))
        fig.canvas.draw()

        # Now we can save it to a numpy array.
        data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
        data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
        #plt.show()

        self._pixel_array = data

        #save stimulus
        color_map = pyplot.get_cmap('gray')
        color_map.set_over(color="y")
        pyplot.imsave(fname = filename,
                    arr  = self._pixel_array,
                    cmap = color_map, format="png", vmin=0, vmax=1)
        #plt.savefig(filename = filename, cmap = color_map, format="png")

        self._background_colour = [0, 0, 0]
Пример #2
0
    def __init__(self, size, position=None, dot_size=(5,5),
                 background_colour=None, dot_colour=None,
                 dot_percentage=50, smoothing=3):
        """Create a visual mask.

        Parameters
        ----------
        size : (int, int)
            size (x, y) of the mask
        position   : (int, int), optional
            position of the mask stimulus
        dot_size : (int, int), optional
            size (x, y) of the dots (default=(5,5))
        background_colour : (int, int), optional
        dot_colour   : (int, int), optional
        dot_percentage : int, optional
            percentage of covered area by the dots (1 to 100) (default=50)
        smoothing : int, optional
            smoothing (default=3)

        """

        if not isinstance(Image, ModuleType):
            message = """VisualMask can not be initialized.
The Python package 'Python Imaging Library (PIL)' is not installed."""
            raise ImportError(message)

        fid, filename = tempfile.mkstemp(
                    dir=stimuli.defaults.tempdir,
                    suffix=".png")
        os.close(fid)
        Picture.__init__(self, filename, position)

        self._size = size
        self.dot_size = dot_size
        if background_colour is not None:
            self.background_colour = background_colour
        else:
            self.background_colour = _internals.active_exp.background_colour
        if dot_colour is not None:
            self.dot_colour = dot_colour
        else:
            self.dot_colour = _internals.active_exp.foreground_colour
        self.dot_percentage = dot_percentage
        self.smoothing = smoothing

        self.create_mask()
Пример #3
0
    def __init__(self,
                 size=None,
                 position=None,
                 lambda_=None,
                 theta=None,
                 sigma=None,
                 phase=None,
                 trim=None):
        """Create a Gabor Patch.

        Parameters
        ----------
        size : (int, int), optional
            size (x, y) of the mask
        position  : (int, int), optional
            position of the mask stimulus
        lambda_ : int, optional
            Spatial frequency (pixel per cycle)
        theta : int or float, optional
            Grating orientation in degrees
        sigma : int or float, optional
            gaussian standard deviation (in pixels)
        phase : float
            0 to 1 inclusive

        Notes
        -----
        The background colour of the stimulus depends of the parameters of
        the Gabor patch and can be determined (e.g. for plotting) with the
        property `GaborPatch.background_colour`.

        """

        # Parts of the code has be ported from http://www.icn.ucl.ac.uk/courses/MATLAB-Tutorials/Elliot_Freeman/html/gabor_tutorial.html

        import types
        if type(np) is not types.ModuleType:
            message = """GaborPatch can not be initialized.
The Python package 'Numpy' is not installed."""
            raise ImportError(message)

        if type(pyplot) is not types.ModuleType:
            message = """GaborPatch can not be initialized.
The Python package 'Matplotlib' is not installed."""
            raise ImportError(message)

        if size is None:
            size = defaults.gaborpatch_size
        if position is None:
            position = defaults.gaborpatch_position
        if lambda_ is None:
            lambda_ = defaults.gaborpatch_lambda_
        if theta is None:
            theta = defaults.gaborpatch_theta
        if sigma is None:
            sigma = defaults.gaborpatch_sigma
        if phase is None:
            phase = defaults.gaborpatch_phase

        fid, filename = tempfile.mkstemp(
            dir=expyriment.stimuli.defaults.tempdir, suffix=".png")
        os.close(fid)
        Picture.__init__(self, filename, position)

        # make linear ramp
        X0 = (np.linspace(1, size, size) / size) - .5
        # Set wavelength and phase
        freq = size / float(lambda_)
        phaseRad = phase * 2 * np.pi
        # Make 2D grating
        Xm, Ym = np.meshgrid(X0, X0)
        # Change orientation by adding Xm and Ym together in different proportions
        thetaRad = (theta / 360.) * 2 * np.pi
        Xt = Xm * np.cos(thetaRad)
        Yt = Ym * np.sin(thetaRad)
        grating = np.sin(((Xt + Yt) * freq * 2 * np.pi) + phaseRad)
        # 2D Gaussian distribution
        gauss = np.exp(-((Xm**2) + (Ym**2)) / (2 * (sigma / float(size))**2))
        # Trim
        gauss[gauss < trim] = 0

        self._pixel_array = grating * gauss

        #save stimulus
        color_map = pyplot.get_cmap('gray')
        color_map.set_over(color="y")

        pyplot.imsave(fname=filename,
                      arr=self._pixel_array,
                      cmap=color_map,
                      format="png")

        # determine background color
        norm = pyplot.normalize(vmin=np.min(self._pixel_array),
                                vmax=np.max(self._pixel_array))
        bgc = color_map(norm(0))
        self._background_colour = map(lambda x: int(x * 255), bgc[:3])
Пример #4
0
    def __init__(self, size=None, position=None, lambda_=None, theta=None,
                sigma=None, phase=None, trim=None):
        """Create a Gabor Patch.

        Parameters
        ----------
        size : (int, int), optional
            size (x, y) of the mask
        position  : (int, int), optional
            position of the mask stimulus
        lambda_ : int, optional
            Spatial frequency (pixel per cycle)
        theta : int or float, optional
            Grating orientation in degrees
        sigma : int or float, optional
            gaussian standard deviation (in pixels)
        phase : float
            0 to 1 inclusive

        Notes
        -----
        The background colour of the stimulus depends of the parameters of
        the Gabor patch and can be determined (e.g. for plotting) with the
        property `GaborPatch.background_colour`.

        """

        # Parts of the code has be ported from http://www.icn.ucl.ac.uk/courses/MATLAB-Tutorials/Elliot_Freeman/html/gabor_tutorial.html

        import types
        if type(np) is not types.ModuleType:
            message = """GaborPatch can not be initialized.
The Python package 'Numpy' is not installed."""
            raise ImportError(message)

        if type(pyplot) is not types.ModuleType:
            message = """GaborPatch can not be initialized.
The Python package 'Matplotlib' is not installed."""
            raise ImportError(message)

        if size is None:
            size = defaults.gaborpatch_size
        if position is None:
            position = defaults.gaborpatch_position
        if lambda_ is None:
            lambda_ = defaults.gaborpatch_lambda_
        if theta is None:
            theta = defaults.gaborpatch_theta
        if sigma is None:
            sigma = defaults.gaborpatch_sigma
        if phase is None:
            phase = defaults.gaborpatch_phase

        fid, filename = tempfile.mkstemp(
                    dir=expyriment.stimuli.defaults.tempdir,
                    suffix=".png")
        os.close(fid)
        Picture.__init__(self, filename, position)

        # make linear ramp
        X0 = (np.linspace(1, size, size) / size) - .5
        # Set wavelength and phase
        freq = size / float(lambda_)
        phaseRad = phase * 2 * np.pi
        # Make 2D grating
        Xm, Ym = np.meshgrid(X0, X0)
        # Change orientation by adding Xm and Ym together in different proportions
        thetaRad = (theta / 360.) * 2 * np.pi
        Xt = Xm * np.cos(thetaRad)
        Yt = Ym * np.sin(thetaRad)
        grating = np.sin(((Xt + Yt) * freq * 2 * np.pi) + phaseRad)
        # 2D Gaussian distribution
        gauss = np.exp(-((Xm ** 2) + (Ym ** 2)) / (2 * (sigma / float(size)) ** 2))
        # Trim
        gauss[gauss < trim] = 0

        self._pixel_array = grating * gauss

        #save stimulus
        color_map = pyplot.get_cmap('gray')
        color_map.set_over(color="y")

        pyplot.imsave(fname = filename,
                    arr  = self._pixel_array,
                    cmap = color_map, format="png")

        # determine background color
        norm = pyplot.normalize(vmin = np.min(self._pixel_array),
                                vmax = np.max(self._pixel_array))
        bgc = color_map(norm(0))
        self._background_colour = map(lambda x:int(x*255), bgc[:3])