def str_el3(coord, ul): """Compute the strains at each element integration point This one is used for 3-noded triangular elements. Parameters ---------- coord : ndarray Coordinates of the nodes of the element (nn, 2). ul : ndarray Array with displacements for the element. Returns ------- epsGT : ndarray Strain components for the Gauss points. xl : ndarray Configuration of the Gauss points after deformation. """ epsl = np.zeros([3]) epsG = np.zeros([3, 3]) xl = np.zeros([3, 2]) XW, XP = gau.gpoints3() for i in range(3): ri = XP[i, 0] si = XP[i, 1] ddet, B = stdm3NT(ri, si, coord) epsl = np.dot(B, ul) epsG[:, i] = epsl N = sha3(ri, si) xl[i, 0] = sum(N[0, 2*i]*coord[i, 0] for i in range(3)) xl[i, 1] = sum(N[0, 2*i]*coord[i, 1] for i in range(3)) return epsG.T, xl
def uel3ntrian(coord, par): """Triangular element with 3 nodes Parameters ---------- coord : ndarray Coordinates for the nodes of the element (3, 2). enu : float Poisson coefficient (-1, 0.5). Emod : float Young modulus (>0). Returns ------- kl : ndarray Local stiffness matrix for the element (6, 6). Examples -------- >>> coord = np.array([ ... [0, 0], ... [1, 0], ... [0, 1]]) >>> stiff = uel3ntrian(coord, 1/3, 8/3) >>> stiff_ex = 1/2 * np.array([ ... [4, 2, -3, -1, -1, -1], ... [2, 4, -1, -1, -1, -3], ... [-3, -1, 3, 0, 0, 1], ... [-1, -1, 0, 1, 1, 0], ... [-1, -1, 0, 1, 1, 0], ... [-1, -3, 1, 0, 0, 3]]) >>> np.allclose(stiff, stiff_ex) True """ Emod = par[0] enu = par[1] rho = par[2] calpha = par[3] cbeta = par[4] kl = np.zeros([6, 6]) ml = np.zeros([6, 6]) cl = np.zeros([6, 6]) C = fem.umat(enu, Emod, rho) XW, XP = gau.gpoints3() ngpts = 3 for i in range(ngpts): ri = XP[i, 0] si = XP[i, 1] alf = XW[i] ddet, B = fem.stdm3NT(ri, si, coord) N = fem.sha3(ri, si) kl = kl + 0.5 * np.dot(np.dot(B.T, C), B) * alf * ddet ml = ml + 0.5 * rho * np.dot(N.T, N) * alf * ddet cl = calpha * kl + cbeta * ml return kl, ml, cl
def uel3ntrian(coord, enu, Emod): """Triangular element with 3 nodes Parameters ---------- coord : ndarray Coordinates for the nodes of the element (3, 2). enu : float Poisson coefficient (-1, 0.5). Emod : float Young modulus (>0). Returns ------- kl : ndarray Local stiffness matrix for the element (6, 6). Examples -------- >>> coord = Matrix([ ... [0, 0], ... [1, 0], ... [0, 1]]) >>> stiff = uel3ntrian(coord, S(1)/3, S(8)/3) >>> stiff_ex = 1/2 * Matrix([ ... [4, 2, -3, -1, -1, -1], ... [2, 4, -1, -1, -1, -3], ... [-3, -1, 3, 0, 0, 1], ... [-1, -1, 0, 1, 1, 0], ... [-1, -1, 0, 1, 1, 0], ... [-1, -3, 1, 0, 0, 3]]) >>> (stiff - stiff_ex).norm()/stiff_ex.norm() < 1e-6 True """ kl = np.zeros([6, 6]) C = fem.umat(enu, Emod) XW, XP = gau.gpoints3() ngpts = 3 for i in range(ngpts): ri = XP[i, 0] si = XP[i, 1] alf = XW[i] ddet, B = fem.stdm3NT(ri, si, coord) kl = kl + 0.5*B.T*C*B*alf*ddet return kl
def str_el3(coord, ul): """Compute the strains at each element integration point This one is used for 3-noded triangular elements. Parameters ---------- coord : ndarray Coordinates of the nodes of the element (nn, 2). ul : ndarray Array with displacements for the element. Returns ------- epsGT : ndarray Strain components for the Gauss points. xl : ndarray Configuration of the Gauss points after deformation. """ epsl = np.zeros([3]) epsG = np.zeros([3, 3]) epsGT = np.zeros([3, 3]) xl = np.zeros([3, 2]) x, y = symbols('x y') XW, XP = gau.gpoints3() for i in range(3): ri = XP[i, 0] si = XP[i, 1] ddet, B = stdm3NT(ri, si, coord) epsl = B*ul epsG[:, i] = epsl[:] N = sha3(ri, si) NN = N.subs([(x, ri), (y, si)]) xl[i, 0] = sum(NN[0, 2*i]*coord[i, 0] for i in range(3)) xl[i, 1] = sum(NN[0, 2*i]*coord[i, 1] for i in range(3)) epsGT = epsG.T return epsGT, xl