Пример #1
0
def str_el3(coord, ul):
    """Compute the strains at each element integration point

    This one is used for 3-noded triangular elements.

    Parameters
    ----------
    coord : ndarray
      Coordinates of the nodes of the element (nn, 2).
    ul : ndarray
      Array with displacements for the element.

    Returns
    -------
    epsGT : ndarray
      Strain components for the Gauss points.
    xl : ndarray
      Configuration of the Gauss points after deformation.

    """
    epsl = np.zeros([3])
    epsG = np.zeros([3, 3])
    xl = np.zeros([3, 2])
    XW, XP = gau.gpoints3()
    for i in range(3):
        ri = XP[i, 0]
        si = XP[i, 1]
        ddet, B = stdm3NT(ri, si, coord)
        epsl = np.dot(B, ul)
        epsG[:, i] = epsl
        N = sha3(ri, si)
        xl[i, 0] = sum(N[0, 2*i]*coord[i, 0] for i in range(3))
        xl[i, 1] = sum(N[0, 2*i]*coord[i, 1] for i in range(3))
    return epsG.T, xl
Пример #2
0
def uel3ntrian(coord, par):
    """Triangular element with 3 nodes

    Parameters
    ----------
    coord : ndarray
      Coordinates for the nodes of the element (3, 2).
    enu : float
      Poisson coefficient (-1, 0.5).
    Emod : float
      Young modulus (>0).

    Returns
    -------
    kl : ndarray
      Local stiffness matrix for the element (6, 6).

    Examples
    --------

    >>> coord = np.array([
    ...         [0, 0],
    ...         [1, 0],
    ...         [0, 1]])
    >>> stiff = uel3ntrian(coord, 1/3, 8/3)
    >>> stiff_ex = 1/2 * np.array([
    ...            [4, 2, -3, -1, -1, -1],
    ...            [2, 4, -1, -1, -1, -3],
    ...            [-3, -1, 3, 0, 0, 1],
    ...            [-1, -1, 0, 1, 1, 0],
    ...            [-1, -1, 0, 1, 1, 0],
    ...            [-1, -3, 1, 0, 0, 3]])
    >>> np.allclose(stiff, stiff_ex)
    True

    """
    Emod = par[0]
    enu = par[1]
    rho = par[2]
    calpha = par[3]
    cbeta = par[4]
    kl = np.zeros([6, 6])
    ml = np.zeros([6, 6])
    cl = np.zeros([6, 6])
    C = fem.umat(enu, Emod, rho)
    XW, XP = gau.gpoints3()
    ngpts = 3
    for i in range(ngpts):
        ri = XP[i, 0]
        si = XP[i, 1]
        alf = XW[i]
        ddet, B = fem.stdm3NT(ri, si, coord)
        N = fem.sha3(ri, si)
        kl = kl + 0.5 * np.dot(np.dot(B.T, C), B) * alf * ddet
        ml = ml + 0.5 * rho * np.dot(N.T, N) * alf * ddet
    cl = calpha * kl + cbeta * ml
    return kl, ml, cl
Пример #3
0
def uel3ntrian(coord, enu, Emod):
    """Triangular element with 3 nodes

    Parameters
    ----------
    coord : ndarray
      Coordinates for the nodes of the element (3, 2).
    enu : float
      Poisson coefficient (-1, 0.5).
    Emod : float
      Young modulus (>0).

    Returns
    -------
    kl : ndarray
      Local stiffness matrix for the element (6, 6).

    Examples
    --------
    
    >>> coord = Matrix([
    ...         [0, 0],
    ...         [1, 0],
    ...         [0, 1]])
    >>> stiff = uel3ntrian(coord, S(1)/3, S(8)/3)
    >>> stiff_ex = 1/2 * Matrix([
    ...            [4, 2, -3, -1, -1, -1],
    ...            [2, 4, -1, -1, -1, -3],
    ...            [-3, -1, 3, 0, 0, 1],
    ...            [-1, -1, 0, 1, 1, 0],
    ...            [-1, -1, 0, 1, 1, 0],
    ...            [-1, -3, 1, 0, 0, 3]])
    >>> (stiff - stiff_ex).norm()/stiff_ex.norm() < 1e-6
    True

    """
    kl = np.zeros([6, 6])
    C = fem.umat(enu, Emod)
    XW, XP = gau.gpoints3()
    ngpts = 3
    for i in range(ngpts):
        ri = XP[i, 0]
        si = XP[i, 1]
        alf = XW[i]
        ddet, B = fem.stdm3NT(ri, si, coord)
        kl = kl + 0.5*B.T*C*B*alf*ddet
    return kl
Пример #4
0
def str_el3(coord, ul):
    """Compute the strains at each element integration point

    This one is used for 3-noded triangular elements.

    Parameters
    ----------
    coord : ndarray
      Coordinates of the nodes of the element (nn, 2).
    ul : ndarray
      Array with displacements for the element.

    Returns
    -------
    epsGT : ndarray
      Strain components for the Gauss points.
    xl : ndarray
      Configuration of the Gauss points after deformation.

    """
    epsl = np.zeros([3])
    epsG = np.zeros([3, 3])
    epsGT = np.zeros([3, 3])
    xl = np.zeros([3, 2])
    x, y = symbols('x y')
    XW, XP = gau.gpoints3()
    for i in range(3):
        ri = XP[i, 0]
        si = XP[i, 1]
        ddet, B = stdm3NT(ri, si, coord)
        epsl = B*ul
        epsG[:, i] = epsl[:]
        N = sha3(ri, si)
        NN = N.subs([(x, ri), (y, si)])
        xl[i, 0] = sum(NN[0, 2*i]*coord[i, 0] for i in range(3))
        xl[i, 1] = sum(NN[0, 2*i]*coord[i, 1] for i in range(3))
    epsGT = epsG.T
    return epsGT, xl