Пример #1
0
if (len(sys.argv) != 5):
  print "Usage: " + sys.argv[0] + " <inputfile> <tags> <n> <outputfile>"
  exit(0)

inputfile = sys.argv[1]
if (sys.argv[2] == "all"):
  t = read_tags()
  tags = t.all_tags
else:
  tags = sys.argv[2].split(",")
print tags
n = int(sys.argv[3])
outputfile = sys.argv[4]

columnNames = load_column_names(inputfile)
tagsIdx = map(lambda x: columnNames.index(x), tags)
print tagsIdx

print "Opening files"
f = open(inputfile, "r")
nOther = 0
nPositive = []
for i in range(len(tags)):
  nPositive.append(0)

outf = open(outputfile, "w")

print "Processing"
lines = f.readlines()
nLines = len(lines)-1
Пример #2
0
def main():
  # Create dataset
  
  inputs = ["jrms", "rms", "mean_10", "mean_100", "max_10", "max_100", "stddev_10", "stddev_100"]
#  inputs = ["max_100", "rms"]
#  inputs = ["max_100", "mean_100"]
#  inputs = ["rms"]
  mode = "train"

  if (len(sys.argv) >= 2):
    if (sys.argv[1] == "test"):
      mode = "test"
  
  print "Create dataset"
  data = load_data("out.txt")
  columnNames = load_column_names("out.txt")
  ds = create_data_set(data, columnNames, inputs, "jumping")
  
  targets = ds['target']
  #print "sum of targest: " + str(targets.sum())
  
  # Create network
  if (mode == "train"):
    print "Build network"
    if (len(sys.argv) >= 3):
      nEpochs = int(sys.argv[2])
    else:
      nEpochs = 1
    net = buildNetwork(len(inputs), N_HIDDEN, 1, bias=True, hiddenclass=TanhLayer)
    trainer = BackpropTrainer(net, ds, verbose = True)
    #net = buildNetwork(len(inputs), N_HIDDEN, 1, bias=True, hiddenclass=TanhLayer)

    print "Train"
    print "Base error: " + str(trainer.testOnData())
    results = testOnClassData(trainer)
    print "Percentage error: " + str(relativePercentError( results, targets )) + "%"
    print "Training started"
    trainer.trainEpochs(nEpochs)
    print "Training done: Saving model"
    NetworkWriter.writeToFile(net, "model.xml")
  else:
    net = NetworkReader.readFrom("model.xml")
    trainer = BackpropTrainer(net, ds, verbose = True)
  
  #print "Final error: " + str(trainer.testOnData())
  
  results = testOnClassData(trainer)
  print "Percentage error (final): " + str(relativePercentError( results, targets )) + "%"
  
  
  # Plot
  # Data
  frames = data[:,1]
  nplots = 3
  subplot(nplots, 1, 1)
  dataType = inputs[0]
  title("Data (" + dataType + ")")
  setp(plot(frames, ds['input'][:,0], color="black", marker=".", linestyle='None'))
  xlabel("frame")
  ylabel(dataType)
#  nplots = len(inputs) + 2
#  for i in range(0, len(inputs)):
#    subplot(nplots, 1, i+1)
#    dataType = inputs[i]
#    title("Data (" + dataType + ")")
#    setp(plot(frames, ds['input'][:,i], color="black", marker=".", linestyle='None'))
#    xlabel("frame")
#    ylabel(inputs[i])
  
  # Correct classification (target)
  subplot(nplots, 1, nplots-1)
  title("Target classification")
  targets = targets[:,0]
  setp(plot(frames, targets, color="blue"))

  # Classification (from NN)
  subplot(nplots, 1, nplots)
  title("NN classification and errors")
  setp(plot(frames, results), color="blue")
  errors = [[],[]]
  for i in range(len(results)):
    if (results[i] != targets[i]):
      errors[0].append(frames[i])
      errors[1].append(0.5)
  setp(plot(errors[0], errors[1]), color="red", marker='.', linestyle='None', alpha=0.5)
  
  savefig("figure.png")
Пример #3
0
if (len(sys.argv) != 5):
    print "Usage: " + sys.argv[0] + " <inputfile> <tags> <n> <outputfile>"
    exit(0)

inputfile = sys.argv[1]
if (sys.argv[2] == "all"):
    t = read_tags()
    tags = t.all_tags
else:
    tags = sys.argv[2].split(",")
print tags
n = int(sys.argv[3])
outputfile = sys.argv[4]

columnNames = load_column_names(inputfile)
tagsIdx = map(lambda x: columnNames.index(x), tags)
print tagsIdx

print "Opening files"
f = open(inputfile, "r")
nOther = 0
nPositive = []
for i in range(len(tags)):
    nPositive.append(0)

outf = open(outputfile, "w")

print "Processing"
lines = f.readlines()
nLines = len(lines) - 1