Пример #1
0
def test_compute_class_weight_auto_negative():
    # Test compute_class_weight when labels are negative
    # Test with balanced class labels.
    classes = np.array([-2, -1, 0])
    y = np.asarray([-1, -1, 0, 0, -2, -2])
    cw = compute_class_weight("auto", classes, y)
    assert_almost_equal(cw.sum(), classes.shape)
    assert_equal(len(cw), len(classes))
    assert_array_almost_equal(cw, np.array([1., 1., 1.]))

    # Test with unbalanced class labels.
    y = np.asarray([-1, 0, 0, -2, -2, -2])
    cw = compute_class_weight("auto", classes, y)
    assert_almost_equal(cw.sum(), classes.shape)
    assert_equal(len(cw), len(classes))
    assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3)
Пример #2
0
def test_compute_class_weight():
    # Test (and demo) compute_class_weight.
    y = np.asarray([2, 2, 2, 3, 3, 4])
    classes = np.unique(y)
    cw = compute_class_weight("auto", classes, y)
    assert_almost_equal(cw.sum(), classes.shape)
    assert_true(cw[0] < cw[1] < cw[2])
Пример #3
0
def test_compute_class_weight_auto_unordered():
    # Test compute_class_weight when classes are unordered
    classes = np.array([1, 0, 3])
    y = np.asarray([1, 0, 0, 3, 3, 3])
    cw = compute_class_weight("auto", classes, y)
    assert_almost_equal(cw.sum(), classes.shape)
    assert_equal(len(cw), len(classes))
    assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3)