Пример #1
0
def run_backtest(context):
    n_bkt, args, mparams = context

    formatter = logging.Formatter('%(asctime)s - n_bkt=' + str(n_bkt) + ' - %(levelname)s: %(message)s')
    configure_root_logger(args.logtty, args.logfile,
                          MongoClient(args.host, args.port)[args.db][args.logmongo] if args.logmongo is not None
                          else None, formatter=formatter)

    db = MongoClient(args.host, args.port)[args.db]

    where_clause = defaultdict(lambda: {})
    country, start_date, end_date = 'GB', parse_date(args.start), parse_date(args.end)
    if start_date is not None:
        where_clause['scheduled_off']['$gte'] = start_date
    if end_date is not None:
        where_clause['scheduled_off']['$lte'] = end_date
    if country is not None:
        where_clause['country'] = country
    sorted_races = db[args.train].find(where_clause, sort=[('scheduled_off', 1)], timeout=False)

    exec_services = HistoricalExecutionService(db)
    strat = strategy.Balius(mu=mparams['mu'], sigma=mparams['sigma'], beta=mparams['beta'], tau=mparams['tau'],
                            draw_probability=mparams['draw_prob'], risk_aversion=mparams['risk_aversion'],
                            min_races=mparams['min_races'], max_exposure=mparams['max_exposure'])
    st = time.clock()
    strategy.backtest(exec_services, strat, sorted_races)
    en = time.clock()
    logging.info('Backtest finished in %.2f seconds' % (en - st))

    strat_dict = strat.to_dict()
    strat_id = db[STRATEGIES_COLL].insert(strat_dict)
    logging.info('Strategy serialised to %s with id=%s' % (db[STRATEGIES_COLL], strat_id))

    bets = price_historical_bets(db, exec_services.get_mu_bets()[0])
    scorecard = make_scorecard(bets)
    now = datetime.datetime.utcnow()
    scorecard.update({'params': {'ts': strat_dict['hm']['ts'], 'risk': strat_dict['risk']},
                      'timestamp': now,
                      'run_seconds': en - st,
                      'strategy_id': strat_id})
    scorecard_id = db[SCORECARDS_COLL].insert(scorecard)
    logging.info('Scorecard inserted in %s with id=%s' % (db[SCORECARDS_COLL], scorecard_id))

    db[BETS_COLL].insert(add_scorecard_id_to_dicts(scorecard_id, bets))
    logging.info('Associated bets inserted in %s' % db[BETS_COLL])

    markets = market_breakdown(bets).reset_index()
    markets = pandas_to_dicts(markets, {'n_runners': int})
    db[MARKETS_COLL].insert(add_scorecard_id_to_dicts(scorecard_id, markets))
    logging.info('Associated market breakdown inserted in %s' % db[MARKETS_COLL])
Пример #2
0
def main(args):
    db = MongoClient(args.host, args.port)[args.db]

    now = datetime.datetime.utcnow()
    markets = list(islice(get_future_markets(hours=args.hours), 0, 1))
    logging.info('Found %d horse races in the next %d hours' % (len(markets), args.hours))
    strats = get_traded_strategies(db[args.paper_trading], True)
    for s in strats:
        strat = Balius.from_dict(db[BKT_STRATEGIES].find_one({'_id': s['strategy_id']}))
        strat.max_expsoure = 1e6
        ex = PaperExecutionService()
        backtest(ex, strat, markets)

        bets = ex.get_mu_bets()[0]
        if len(bets) == 0:
            logging.info('Strategy with id=%s did not place any bets.' % s['strategy_id'])
            continue
        for bet in bets:
            bet['strategy_id'] = s['strategy_id']
            bet['timestamp'] = now
        db[args.paper_bets].insert(bets)
        logging.info('Successfully insert %d bets for strategy with id=%s' % (len(bets), s['strategy_id']))
Пример #3
0
def run_backtest(context):
    n_bkt, args, mparams = context

    formatter = logging.Formatter('%(asctime)s - n_bkt=' + str(n_bkt) +
                                  ' - %(levelname)s: %(message)s')
    configure_root_logger(
        args.logtty,
        args.logfile,
        MongoClient(args.host, args.port)[args.db][args.logmongo]
        if args.logmongo is not None else None,
        formatter=formatter)

    db = MongoClient(args.host, args.port)[args.db]

    where_clause = defaultdict(lambda: {})
    country, start_date, end_date = 'GB', parse_date(args.start), parse_date(
        args.end)
    if start_date is not None:
        where_clause['scheduled_off']['$gte'] = start_date
    if end_date is not None:
        where_clause['scheduled_off']['$lte'] = end_date
    if country is not None:
        where_clause['country'] = country
    sorted_races = db[args.train].find(where_clause,
                                       sort=[('scheduled_off', 1)],
                                       timeout=False)

    exec_services = HistoricalExecutionService(db)
    strat = strategy.Balius(mu=mparams['mu'],
                            sigma=mparams['sigma'],
                            beta=mparams['beta'],
                            tau=mparams['tau'],
                            draw_probability=mparams['draw_prob'],
                            risk_aversion=mparams['risk_aversion'],
                            min_races=mparams['min_races'],
                            max_exposure=mparams['max_exposure'])
    st = time.clock()
    strategy.backtest(exec_services, strat, sorted_races)
    en = time.clock()
    logging.info('Backtest finished in %.2f seconds' % (en - st))

    strat_dict = strat.to_dict()
    strat_id = db[STRATEGIES_COLL].insert(strat_dict)
    logging.info('Strategy serialised to %s with id=%s' %
                 (db[STRATEGIES_COLL], strat_id))

    bets = price_historical_bets(db, exec_services.get_mu_bets()[0])
    scorecard = make_scorecard(bets)
    now = datetime.datetime.utcnow()
    scorecard.update({
        'params': {
            'ts': strat_dict['hm']['ts'],
            'risk': strat_dict['risk']
        },
        'timestamp': now,
        'run_seconds': en - st,
        'strategy_id': strat_id
    })
    scorecard_id = db[SCORECARDS_COLL].insert(scorecard)
    logging.info('Scorecard inserted in %s with id=%s' %
                 (db[SCORECARDS_COLL], scorecard_id))

    db[BETS_COLL].insert(add_scorecard_id_to_dicts(scorecard_id, bets))
    logging.info('Associated bets inserted in %s' % db[BETS_COLL])

    markets = market_breakdown(bets).reset_index()
    markets = pandas_to_dicts(markets, {'n_runners': int})
    db[MARKETS_COLL].insert(add_scorecard_id_to_dicts(scorecard_id, markets))
    logging.info('Associated market breakdown inserted in %s' %
                 db[MARKETS_COLL])