Пример #1
0
def do_cdfs(options, stats, write_filepath):

    if not write_filepath:
        write_filepath = get_output_filepath(options.input)

    for metric in options.metrics:
        print("reformatting data...")
        data = {}
        for i, g in enumerate(stats['group']):
            if options.max and i >= options.max:
                break
            data[g] = [d[metric] for d in stats['data'][g]["distribution"]]

        print("plotting CDFs")
        xmax = round(math.ceil(max(data[stats['group'][0]])))
        axis_limits = [0, xmax, 0, 1]
        if options.minx:
            axis_limits[0] = options.minx
        if options.maxx:
            axis_limits[1] = options.maxx
        plot.plot('cdf',
                  data,
                  COLORS,
                  axis_limits,
                  metric,
                  "linear",
                  "linear",
                  write_filepath + '_' + metric + '_cdfs',
                  options.write,
                  xlabel=metric_fullname(metric) + ' (miles)',
                  ylabel='fraction of \ncontroller placements',
                  ext=options.ext)

    if not options.write:
        plot.show()
Пример #2
0
def do_cdfs(options, stats, write_filepath):

    if not write_filepath:
        write_filepath = get_output_filepath(options.input)

    for metric in options.metrics:
        print "reformatting data..."
        data = {}
        for i, g in enumerate(stats['group']):
            if options.max and i >= options.max:
                break
            data[g] = [d[metric] for d in stats['data'][g]["distribution"]]

        print "plotting CDFs"
        xmax = round(math.ceil(max(data[stats['group'][0]])))
        axis_limits = [0, xmax, 0, 1]
        if options.minx:
            axis_limits[0] = options.minx
        if options.maxx:
            axis_limits[1] = options.maxx
        plot.plot('cdf', data, COLORS, axis_limits,
                  metric, "linear", "linear", write_filepath + '_' + metric + '_cdfs',
                  options.write,
                  xlabel = metric_fullname(metric) + ' (miles)',
                  ylabel = 'fraction of \ncontroller placements',
                  ext = options.ext)

    if not options.write:
        plot.show()
Пример #3
0
#!/usr/bin/env python3

from lib.plot import plot

if __name__ == '__main__':
    plot()
Пример #4
0
                    for j, b in enumerate(values):
                        if x[j] not in combined:
                            combined[x[j]] = []
                        combined[x[j]].append(b)

            group_str = get_group_str(options)
            xmax = max(combined[sorted(combined.keys())[0]])
            axis_limits = [0, xmax, 0, 1]
            for xscale in ["linear", "log"]:
                ptype = 'latency_cdfs_' + xscale
                write_filepath = 'data_vis/merged/%s_%i_to_%i_%s_%s' % (group_str, options.from_start, options.from_end, metric, ptype)
                # Assume the loweest-numbered element is the smallest
                plot.plot('cdf', combined, COLORS, axis_limits,
                          metric, xscale, "linear", write_filepath,
                          options.write,
                          xlabel = 'optimal ' + metric_fullname(metric) + ' (miles)',
                          ylabel = 'fraction of topologies',
                          ext = options.ext,
                          legend = True)

            if options.gen_1ctrl_table:
                write_filepath = 'data_vis/merged/%s_%i_to_%i_%s_%s' % (group_str, options.from_start, options.from_end, metric, '1ctrl_table')
                dump_1ctrl_latex_table(combined[1], write_filepath, SAFETY_MARGINS, USE_FRACTIONS)

        if 'pareto' in options.cdf_plots:
            assert 'pareto_max' in metric_data
            assert 'base' in metric_data['pareto_max']
            topo_data = metric_data['pareto_max']['base']
            combined = {}  # keys are values for k; values are distribution of optimal latencies
            for topo, data_lines in topo_data.iteritems():
                x = data_lines['x']
Пример #5
0
    args = parser.parse_args()

    if args.work == None:
        print('must specify work')

    elif args.work == 'preprocess' or args.work == 'pre':
        from lib.preprocess import do_preprocess
        if args.file != None:
            do_preprocess(args.file[0], args.file[1])
        else:
            do_preprocess(test_exist=True)
        os.system('python3 main.py -w train -e 5 -b 256')

    elif args.work == 'test':
        from lib.test import test
        test(args.file[0], args.file[1])

    elif args.work == 'train':
        from lib.train import train
        history = train(model_path=args.model,
                        epochs=args.epochs,
                        batch_size=args.batch_size,
                        seed=args.random_seed)
        if args.plot == True:
            from lib.plot import plot
            plot(history)

    elif args.work == 'semi':
        from lib.semiParse import semiParse
        semiParse()
Пример #6
0
from ij import IJ
import sys
sys.path.append("/home/albert/lab/scripts/python/imagej/IsoView-GCaMP/")
from lib.plot import plot2DRoiOverZ as plot

imp3D = IJ.getImage()

plot(imp3D,
     YaxisLabel="Fluorescence intensity",
     XaxisLabel="Time (seconds)",
     Zscale=0.75)