Пример #1
0
    def my_checkpoint(step, t, dt, state):

        write_restart = (check_step(step, nrestart)
                         if step != restart_step else False)
        if write_restart is True:
            with open(snapshot_pattern.format(step=step, rank=rank), "wb") as f:
                pickle.dump({
                    "local_mesh": local_mesh,
                    "state": obj_array_vectorize(actx.to_numpy, flatten(state)),
                    "t": t,
                    "step": step,
                    "global_nelements": global_nelements,
                    "num_parts": nparts,
                    }, f)


        #x0=f(time)
        exact_soln = Discontinuity(dim=dim, x0=.05,sigma=0.00001,
                                  rhol=rho2, rhor=rho1,
                                  pl=pressure2, pr=pressure1,
                                  ul=vel_inflow[0], ur=0., uc=mach*c_bkrnd)

        return sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos,
                              q=state, vizname=casename,
                              step=step, t=t, dt=dt, nstatus=nstatus,
                              nviz=nviz, exittol=exittol,
                              constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer,
                              overwrite=True, exact_soln=exact_soln,sigma=sigma_sc,kappa=kappa_sc)
Пример #2
0
def main(ctx_factory=cl.create_some_context,
         snapshot_pattern="y0euler-{step:06d}-{rank:04d}.pkl",
         restart_step=None,
         use_profiling=False,
         use_logmgr=False):
    """Drive the Y0 example."""

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = 0
    rank = comm.Get_rank()
    nparts = comm.Get_size()
    """logging and profiling"""
    logmgr = initialize_logmgr(use_logmgr,
                               use_profiling,
                               filename="y0euler.sqlite",
                               mode="wu",
                               mpi_comm=comm)

    cl_ctx = ctx_factory()
    if use_profiling:
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
        actx = PyOpenCLProfilingArrayContext(
            queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
            logmgr=logmgr)
    else:
        queue = cl.CommandQueue(cl_ctx)
        actx = PyOpenCLArrayContext(queue,
                                    allocator=cl_tools.MemoryPool(
                                        cl_tools.ImmediateAllocator(queue)))

    #nviz = 500
    #nrestart = 500
    nviz = 50
    nrestart = 10000000
    current_dt = 1.0e-7
    #t_final = 5.e-7
    t_final = 3e-4

    dim = 2
    order = 1
    exittol = 10000000  # do never exit when comparing to exact solution
    #t_final = 0.001
    current_cfl = 1.0
    vel_init = np.zeros(shape=(dim, ))
    vel_inflow = np.zeros(shape=(dim, ))
    vel_outflow = np.zeros(shape=(dim, ))
    orig = np.zeros(shape=(dim, ))
    #vel[0] = 340.0
    #vel_inflow[0] = 100.0  # m/s
    current_t = 0
    casename = "y0euler"
    constant_cfl = False
    # no internal euler status messages
    nstatus = 1000000000
    checkpoint_t = current_t
    current_step = 0

    # working gas: CO2 #
    #   gamma = 1.289
    #   MW=44.009  g/mol
    #   cp = 37.135 J/mol-K,
    #   rho= 1.977 kg/m^3 @298K
    gamma_CO2 = 1.289
    R_CO2 = 8314.59 / 44.009

    # background
    #   100 Pa
    #   298 K
    #   rho = 1.77619667e-3 kg/m^3
    #   velocity = 0,0,0
    rho_bkrnd = 1.77619667e-3
    pres_bkrnd = 100
    temp_bkrnd = 298
    c_bkrnd = math.sqrt(gamma_CO2 * pres_bkrnd / rho_bkrnd)

    # isentropic shock relations #
    # lab frame, moving shock
    # state 1 is behind (downstream) the shock, state 2 is in front (upstream) of the shock

    mach = 2.0
    pressure_ratio = (2. * gamma_CO2 * mach * mach -
                      (gamma_CO2 - 1.)) / (gamma_CO2 + 1.)
    density_ratio = (gamma_CO2 + 1.) * mach * mach / (
        (gamma_CO2 - 1.) * mach * mach + 2.)
    mach2 = math.sqrt(((gamma_CO2 - 1.) * mach * mach + 2.) /
                      (2. * gamma_CO2 * mach * mach - (gamma_CO2 - 1.)))

    rho1 = rho_bkrnd
    pressure1 = pres_bkrnd
    rho2 = rho1 * density_ratio
    pressure2 = pressure1 * pressure_ratio
    velocity1 = 0.
    velocity2 = -mach * c_bkrnd * (1 / density_ratio - 1)
    c_shkd = math.sqrt(gamma_CO2 * pressure2 / rho2)

    vel_inflow[0] = velocity2

    timestepper = rk4_step
    eos = IdealSingleGas(gamma=gamma_CO2, gas_const=R_CO2)
    bulk_init = Discontinuity(dim=dim,
                              x0=.05,
                              sigma=0.01,
                              rhol=rho2,
                              rhor=rho1,
                              pl=pressure2,
                              pr=pressure1,
                              ul=vel_inflow[0],
                              ur=0.)
    inflow_init = Lump(dim=dim,
                       rho0=rho2,
                       p0=pressure2,
                       center=orig,
                       velocity=vel_inflow,
                       rhoamp=0.0)
    outflow_init = Lump(dim=dim,
                        rho0=rho1,
                        p0=pressure1,
                        center=orig,
                        velocity=vel_outflow,
                        rhoamp=0.0)

    inflow = PrescribedBoundary(inflow_init)
    outflow = PrescribedBoundary(outflow_init)
    wall = AdiabaticSlipBoundary()
    dummy = DummyBoundary()

    # shock capturing parameters
    # sonic conditions
    density_ratio = (gamma_CO2 + 1.) * 1.0 / ((gamma_CO2 - 1.) + 2.)

    density_star = rho1 * density_ratio
    shock_thickness = 20 * 0.001  # on the order of 3 elements, should match what is in mesh generator
    # alpha is ~h/p (spacing/order)
    #alpha_sc = shock_thickness*abs(velocity1-velocity2)*density_star
    alpha_sc = 0.1
    # sigma is ~p^-4
    sigma_sc = -11.0
    # kappa is empirical ...
    kappa_sc = 0.5
    print(
        f"Shock capturing parameters: alpha {alpha_sc}, s0 {sigma_sc}, kappa {kappa_sc}"
    )

    # timestep estimate
    wave_speed = max(mach2 * c_bkrnd, c_shkd + velocity2)
    char_len = 0.001
    area = char_len * char_len / 2
    perimeter = 2 * char_len + math.sqrt(2 * char_len * char_len)
    h = 2 * area / perimeter

    dt_est = 1 / (wave_speed * order * order / h)
    print(f"Time step estimate {dt_est}\n")

    dt_est_visc = 1 / (wave_speed * order * order / h +
                       alpha_sc * order * order * order * order / h / h)
    print(f"Viscous timestep estimate {dt_est_visc}\n")

    from grudge import sym
    #    boundaries = {BTAG_ALL: DummyBoundary}
    boundaries = {
        sym.DTAG_BOUNDARY("Inflow"): inflow,
        sym.DTAG_BOUNDARY("Outflow"): outflow,
        sym.DTAG_BOUNDARY("Wall"): wall
    }

    #local_mesh, global_nelements = create_parallel_grid(comm,
    #get_pseudo_y0_mesh)
    #
    #local_nelements = local_mesh.nelements

    if restart_step is None:
        local_mesh, global_nelements = create_parallel_grid(comm, get_mesh)
        local_nelements = local_mesh.nelements

    else:  # Restart
        with open(snapshot_pattern.format(step=restart_step, rank=rank),
                  "rb") as f:
            restart_data = pickle.load(f)

        local_mesh = restart_data["local_mesh"]
        local_nelements = local_mesh.nelements
        global_nelements = restart_data["global_nelements"]

        assert comm.Get_size() == restart_data["num_parts"]

    if rank == 0:
        logging.info("Making discretization")
    discr = EagerDGDiscretization(actx,
                                  local_mesh,
                                  order=order,
                                  mpi_communicator=comm)
    nodes = thaw(actx, discr.nodes())

    if restart_step is None:
        if rank == 0:
            logging.info("Initializing soln.")
        current_state = bulk_init(0, nodes, eos=eos)
    else:
        current_t = restart_data["t"]
        current_step = restart_step

        current_state = unflatten(
            actx, discr.discr_from_dd("vol"),
            obj_array_vectorize(actx.from_numpy, restart_data["state"]))

    vis_timer = None

    if logmgr:
        logmgr_add_device_name(logmgr, queue)
        logmgr_add_discretization_quantities(logmgr, discr, eos, dim)
        #logmgr_add_package_versions(logmgr)

        logmgr.add_watches([
            "step.max", "t_sim.max", "t_step.max", "min_pressure",
            "max_pressure", "min_temperature", "max_temperature"
        ])

        try:
            logmgr.add_watches(["memory_usage.max"])
        except KeyError:
            pass

        if use_profiling:
            logmgr.add_watches(["pyopencl_array_time.max"])

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

    #visualizer = make_visualizer(discr, discr.order + 3
    #if discr.dim == 2 else discr.order)
    visualizer = make_visualizer(discr, discr.order)

    #    initname = initializer.__class__.__name__
    initname = "pseudoY0"
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim,
                                     order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt,
                                     t_final=t_final,
                                     nstatus=nstatus,
                                     nviz=nviz,
                                     cfl=current_cfl,
                                     constant_cfl=constant_cfl,
                                     initname=initname,
                                     eosname=eosname,
                                     casename=casename)
    if rank == 0:
        logger.info(init_message)

    get_timestep = partial(inviscid_sim_timestep,
                           discr=discr,
                           t=current_t,
                           dt=current_dt,
                           cfl=current_cfl,
                           eos=eos,
                           t_final=t_final,
                           constant_cfl=constant_cfl)

    def my_rhs(t, state):
        #return inviscid_operator(discr, eos=eos, boundaries=boundaries, q=state, t=t)
        return (inviscid_operator(
            discr, q=state, t=t, boundaries=boundaries, eos=eos) +
                artificial_viscosity(discr,
                                     t=t,
                                     r=state,
                                     eos=eos,
                                     boundaries=boundaries,
                                     alpha=alpha_sc,
                                     sigma=sigma_sc,
                                     kappa=kappa_sc))

    def my_checkpoint(step, t, dt, state):

        write_restart = (check_step(step, nrestart)
                         if step != restart_step else False)
        if write_restart is True:
            with open(snapshot_pattern.format(step=step, rank=rank),
                      "wb") as f:
                pickle.dump(
                    {
                        "local_mesh": local_mesh,
                        "state": obj_array_vectorize(actx.to_numpy,
                                                     flatten(state)),
                        "t": t,
                        "step": step,
                        "global_nelements": global_nelements,
                        "num_parts": nparts,
                    }, f)

        #x0=f(time)
        exact_soln = Discontinuity(dim=dim,
                                   x0=.05,
                                   sigma=0.00001,
                                   rhol=rho2,
                                   rhor=rho1,
                                   pl=pressure2,
                                   pr=pressure1,
                                   ul=vel_inflow[0],
                                   ur=0.,
                                   uc=mach * c_bkrnd)

        return sim_checkpoint(discr=discr,
                              visualizer=visualizer,
                              eos=eos,
                              q=state,
                              vizname=casename,
                              step=step,
                              t=t,
                              dt=dt,
                              nstatus=nstatus,
                              nviz=nviz,
                              exittol=exittol,
                              constant_cfl=constant_cfl,
                              comm=comm,
                              vis_timer=vis_timer,
                              overwrite=True,
                              exact_soln=exact_soln,
                              sigma=sigma_sc,
                              kappa=kappa_sc)

    if rank == 0:
        logging.info("Stepping.")

    (current_step, current_t, current_state) = \
        advance_state(rhs=my_rhs, timestepper=timestepper,
                      checkpoint=my_checkpoint,
                      get_timestep=get_timestep, state=current_state,
                      t_final=t_final, t=current_t, istep=current_step,
                      logmgr=logmgr,eos=eos,dim=dim)

    if rank == 0:
        logger.info("Checkpointing final state ...")

    my_checkpoint(current_step,
                  t=current_t,
                  dt=(current_t - checkpoint_t),
                  state=current_state)

    if current_t - t_final < 0:
        raise ValueError("Simulation exited abnormally")

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())
Пример #3
0
def main(ctx_factory=cl.create_some_context,
         snapshot_pattern="y0euler-{step:06d}-{rank:04d}.pkl",
         restart_step=None, use_profiling=False, use_logmgr=False):
    """Drive the Y0 example."""

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = 0
    rank = comm.Get_rank()
    nparts = comm.Get_size()

    """logging and profiling"""
    logmgr = initialize_logmgr(use_logmgr, filename="y0euler.sqlite",
        mode="wo", mpi_comm=comm)

    cl_ctx = ctx_factory()
    if use_profiling:
        queue = cl.CommandQueue(cl_ctx,
            properties=cl.command_queue_properties.PROFILING_ENABLE)
        actx = PyOpenCLProfilingArrayContext(queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
            logmgr=logmgr)
    else:
        queue = cl.CommandQueue(cl_ctx)
        actx = PyOpenCLArrayContext(queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)))

    #nviz = 500
    #nrestart = 500
    nviz = 100
    nrestart = 100
    #current_dt = 2.5e-8 # stable with euler
    current_dt = 4e-7 # stable with lrsrk144
    t_final = 5.e-1

    dim = 3
    order = 1
    exittol = .09
    #t_final = 0.001
    current_cfl = 1.0
    vel_init = np.zeros(shape=(dim,))
    vel_inflow = np.zeros(shape=(dim,))
    vel_outflow = np.zeros(shape=(dim,))
    orig = np.zeros(shape=(dim,))
    orig[0] = 0.83
    orig[2] = 0.001
    #vel[0] = 340.0
    #vel_inflow[0] = 100.0  # m/s
    current_t = 0
    casename = "y0euler"
    constant_cfl = False
    nstatus = 10000000000
    rank = 0
    checkpoint_t = current_t
    current_step = 0

    # working gas: CO2 #
    #   gamma = 1.289
    #   MW=44.009  g/mol
    #   cp = 37.135 J/mol-K,
    #   rho= 1.977 kg/m^3 @298K
    gamma_CO2 = 1.289
    R_CO2 = 8314.59/44.009

    # background
    #   100 Pa
    #   298 K
    #   rho = 1.77619667e-3 kg/m^3
    #   velocity = 0,0,0
    rho_bkrnd=1.77619667e-3
    pres_bkrnd=100
    temp_bkrnd=298
     
    # nozzle inflow #
    # 
    # stagnation tempertuare 298 K
    # stagnation pressure 1.5e Pa
    # 
    # isentropic expansion based on the area ratios between the inlet (r=13e-3m) and the throat (r=6.3e-3)
    #
    #  MJA, this is calculated offline, add some code to do it for us
    # 
    #   Mach number=0.139145
    #   pressure=148142
    #   temperature=297.169
    #   density=2.63872
    #   gamma=1.289

    # calculate the inlet Mach number from the area ratio
    nozzleInletRadius = 13.e-3
    nozzleThroatRadius = 6.3e-3
    nozzleInletArea = math.pi*nozzleInletRadius*nozzleInletRadius
    nozzleThroatArea = math.pi*nozzleThroatRadius*nozzleThroatRadius
    inletAreaRatio = nozzleInletArea/nozzleThroatArea

    def getMachFromAreaRatio(area_ratio, gamma, mach_guess=0.01):
        error=1.e-8
        nextError=1.e8
        g=gamma
        M0=mach_guess
        while nextError > error:
            R = ((2/(g+1)+((g-1)/(g+1)*M0*M0))**(((g+1)/(2*g-2))))/M0-area_ratio
            dRdM = (2*((2/(g+1)+((g-1)/(g+1)*M0*M0))**(((g+1)/(2*g-2))))/
                   (2*g-2)*(g-1)/(2/(g+1)+((g-1)/(g+1)*M0*M0))-
                   ((2/(g+1)+((g-1)/(g+1)*M0*M0))**(((g+1)/(2*g-2))))* M0**(-2))
      
            M1=M0-R/dRdM
            nextError=abs(R)
            M0=M1

        return M1


    def getIsentropicPressure(mach, P0, gamma):
        pressure=(1.+(gamma-1.)*0.5*math.pow(mach,2))
        pressure=P0*math.pow(pressure,(-gamma/(gamma-1.)))
        return pressure

  
    def getIsentropicTemperature(mach, T0, gamma):
      temperature=(1.+(gamma-1.)*0.5*math.pow(mach,2))
      temperature=T0*math.pow(temperature,-1.0)
      return temperature


    inlet_mach = getMachFromAreaRatio(area_ratio = inletAreaRatio, gamma=gamma_CO2, mach_guess = 0.01);
    # ramp the stagnation pressure
    start_ramp_pres = 1000
    ramp_interval = 5.e-3
    t_ramp_start = 1e-5
    pres_inflow = getIsentropicPressure(mach=inlet_mach, P0=start_ramp_pres, gamma=gamma_CO2)
    temp_inflow = getIsentropicTemperature(mach=inlet_mach, T0=298, gamma=gamma_CO2)
    rho_inflow = pres_inflow/temp_inflow/R_CO2

    print(f'inlet Mach number {inlet_mach}')
    print(f'inlet temperature {temp_inflow}')
    print(f'inlet pressure {pres_inflow}')

    end_ramp_pres = 150000
    pres_inflow_final = getIsentropicPressure(mach=inlet_mach, P0=end_ramp_pres, gamma=gamma_CO2)

    print(f'final inlet pressure {pres_inflow_final}')


    #pres_inflow=148142
    #temp_inflow=297.169
    #rho_inflow=2.63872
    #mach_inflow=infloM = 0.139145
    vel_inflow[0] = inlet_mach*math.sqrt(gamma_CO2*pres_inflow/rho_inflow)

    # starting pressure for the inflow ramp

    #timestepper = rk4_step
    #timestepper = lsrk54_step
    timestepper = lsrk144_step
    #timestepper = euler_step
    eos = IdealSingleGas(gamma=gamma_CO2, gas_const=R_CO2)
    bulk_init = Discontinuity(dim=dim, x0=-.30,sigma=0.005,
    #bulk_init = Discontinuity(dim=dim, x0=-.31,sigma=0.04,
                              rhol=rho_inflow, rhor=rho_bkrnd,
                              pl=pres_inflow, pr=pres_bkrnd,
                              ul=vel_inflow, ur=vel_outflow)
    #inflow_init = Lump(dim=dim, rho0=rho_inflow, p0=pres_inflow,
                       #center=orig, velocity=vel_inflow, rhoamp=0.0)
    #outflow_init = Lump(dim=dim, rho0=rho_bkrnd, p0=pres_bkrnd,
                       #center=orig, velocity=vel_outflow, rhoamp=0.0)

    # pressure ramp function
    def inflow_ramp_pressure(t, startP=start_ramp_pres, finalP=end_ramp_pres, 
                             ramp_interval=ramp_interval, t_ramp_start=t_ramp_start):
      if t > t_ramp_start:
          rampPressure = min(finalP, startP+(t-t_ramp_start)/ramp_interval*(finalP-startP))
      else:
          rampPressure = startP
      return rampPressure


    class IsentropicInflow:

        def __init__(self, *, dim=1, direc=0, T0=298, P0=1e5, mach= 0.01, p_fun = None):

            self._P0 = P0
            self._T0 = T0
            self._dim = dim
            self._direc = direc
            self._mach = mach
            if p_fun is not None:
              self._p_fun = p_fun
    
        def __call__(self, x_vec, *, t=0, eos):
    
    
            if self._p_fun is not None:
                P0 = self._p_fun(t)
            else:
                P0 = self._P0
            T0 = self._T0

            gamma = eos.gamma()
            gas_const = eos.gas_const()
            pressure = getIsentropicPressure(mach=self._mach, P0=P0, gamma=gamma)
            temperature = getIsentropicTemperature(mach=self._mach, T0=T0, gamma=gamma)
            rho = pressure/temperature/gas_const

            #print(f'ramp Mach number {self._mach}')
            #print(f'ramp stagnation pressure {P0}')
            #print(f'ramp stagnation temperature {T0}')
            #print(f'ramp pressure {pressure}')
            #print(f'ramp temperature {temperature}')

            velocity = np.zeros(shape=(self._dim,)) 
            velocity[self._direc] = self._mach*math.sqrt(gamma*pressure/rho)
    
            mass = 0.0*x_vec[0] + rho
            mom = velocity*mass
            energy = (pressure/(gamma - 1.0)) + np.dot(mom, mom)/(2.0*mass)
            from mirgecom.euler import join_conserved
            return join_conserved(dim=self._dim, mass=mass, momentum=mom, energy=energy)


    inflow_init = IsentropicInflow(dim=dim, T0=298, P0=start_ramp_pres, 
                                   mach = inlet_mach , p_fun=inflow_ramp_pressure)
    outflow_init = Uniform(dim=dim, rho=rho_bkrnd, p=pres_bkrnd,
                           velocity=vel_outflow)

    inflow = PrescribedBoundary(inflow_init)
    outflow = PrescribedBoundary(outflow_init)
    wall = AdiabaticSlipBoundary()
    dummy = DummyBoundary()

    alpha_sc = 0.5
    # s0 is ~p^-4 
    #s0_sc = -11.0
    s0_sc = -5.0
    # kappa is empirical ...
    kappa_sc = 0.5
    print(f"Shock capturing parameters: alpha {alpha_sc}, s0 {s0_sc}, kappa {kappa_sc}")

    # timestep estimate
    #wave_speed = max(mach2*c_bkrnd,c_shkd+velocity2[0])
    #char_len = 0.001
    #area=char_len*char_len/2
    #perimeter = 2*char_len+math.sqrt(2*char_len*char_len)
    #h = 2*area/perimeter

    #dt_est = 1/(wave_speed*order*order/h)
    #print(f"Time step estimate {dt_est}\n")
#
    #dt_est_visc = 1/(wave_speed*order*order/h+alpha_sc*order*order*order*order/h/h)
    #print(f"Viscous timestep estimate {dt_est_visc}\n")

    from grudge import sym
    boundaries = {sym.DTAG_BOUNDARY("Inflow"): inflow,
                  sym.DTAG_BOUNDARY("Outflow"): outflow,
                  sym.DTAG_BOUNDARY("Wall"): wall}

    if restart_step is None:
        local_mesh, global_nelements = create_parallel_grid(comm, get_pseudo_y0_mesh)
        local_nelements = local_mesh.nelements

    else:  # Restart
        with open(snapshot_pattern.format(step=restart_step, rank=rank), "rb") as f:
            restart_data = pickle.load(f)

        local_mesh = restart_data["local_mesh"]
        local_nelements = local_mesh.nelements
        global_nelements = restart_data["global_nelements"]

        assert comm.Get_size() == restart_data["num_parts"]

    if rank == 0:
        logging.info("Making discretization")
    discr = EagerDGDiscretization(
        actx, local_mesh, order=order, mpi_communicator=comm
    )
    nodes = thaw(actx, discr.nodes())

    if restart_step is None:
        if rank == 0:
            logging.info("Initializing soln.")
        # for Discontinuity initial conditions
        current_state = bulk_init(0, nodes, eos=eos)
        # for uniform background initial condition
        #current_state = bulk_init(nodes, eos=eos)
    else:
        current_t = restart_data["t"]
        current_step = restart_step

        current_state = unflatten(
            actx, discr.discr_from_dd("vol"),
            obj_array_vectorize(actx.from_numpy, restart_data["state"]))

    vis_timer = None

    if logmgr:
        logmgr_add_device_name(logmgr, queue)
        logmgr_add_many_discretization_quantities(logmgr, discr, dim,
            extract_vars_for_logging, units_for_logging)
        #logmgr_add_package_versions(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max", "t_log.max",
                            "min_pressure", "max_pressure",
                            "min_temperature", "max_temperature"])

        try:
            logmgr.add_watches(["memory_usage.max"])
        except KeyError:
            pass

        if use_profiling:
            logmgr.add_watches(["pyopencl_array_time.max"])

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

    visualizer = make_visualizer(discr, discr.order + 3
                                 if discr.dim == 2 else discr.order)
    #    initname = initializer.__class__.__name__
    initname = "pseudoY0"
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim, order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt, t_final=t_final,
                                     nstatus=nstatus, nviz=nviz,
                                     cfl=current_cfl,
                                     constant_cfl=constant_cfl,
                                     initname=initname,
                                     eosname=eosname, casename=casename)
    if rank == 0:
        logger.info(init_message)

    get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t,
                           dt=current_dt, cfl=current_cfl, eos=eos,
                           t_final=t_final, constant_cfl=constant_cfl)

    def my_rhs(t, state):
        #return inviscid_operator(discr, eos=eos, boundaries=boundaries, q=state, t=t)
        return ( inviscid_operator(discr, q=state, t=t,boundaries=boundaries, eos=eos)
               + artificial_viscosity(discr,t=t, r=state, eos=eos, boundaries=boundaries,
               alpha=alpha_sc, s0=s0_sc, kappa=kappa_sc))

    def my_checkpoint(step, t, dt, state):

        write_restart = (check_step(step, nrestart)
                         if step != restart_step else False)
        if write_restart is True:
            with open(snapshot_pattern.format(step=step, rank=rank), "wb") as f:
                pickle.dump({
                    "local_mesh": local_mesh,
                    "state": obj_array_vectorize(actx.to_numpy, flatten(state)),
                    "t": t,
                    "step": step,
                    "global_nelements": global_nelements,
                    "num_parts": nparts,
                    }, f)

        return sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos,
                              q=state, vizname=casename,
                              step=step, t=t, dt=dt, nstatus=nstatus,
                              nviz=nviz, exittol=exittol,
                              constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer,
                              overwrite=True,s0=s0_sc,kappa=kappa_sc)

    if rank == 0:
        logging.info("Stepping.")

    (current_step, current_t, current_state) = \
        advance_state(rhs=my_rhs, timestepper=timestepper,
                      checkpoint=my_checkpoint,
                      get_timestep=get_timestep, state=current_state,
                      t_final=t_final, t=current_t, istep=current_step,
                      logmgr=logmgr,eos=eos,dim=dim)

    if rank == 0:
        logger.info("Checkpointing final state ...")

    my_checkpoint(current_step, t=current_t,
                  dt=(current_t - checkpoint_t),
                  state=current_state)

    if current_t - t_final < 0:
        raise ValueError("Simulation exited abnormally")

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())