def is_posdefinite(matrix): """ The test for positive definiteness using the determinants of the nested principal minor matrices is taken from Varian; "Microeconomic Analysis". Returns True if input matrix is positive definite, False otherwise. """ flag = True ndim = squaredim(matrix, 'is_posdefinite') for k in range(0, ndim): '''# Test No. 1 - Necessary condition for positive SEMI-definiteness: if matrix[k][k] <= 0.0: flag = False break''' # (Test No. 2 -) Sufficient condition for positive definiteness: minor = Matrix() kp1 = k + 1 minor.zero(kp1, kp1) for j in range(0, kp1): for i in range(0, kp1): minor[j][i] = matrix[j][i] x = determinant(minor) del minor if x <= 0.0: flag = False break return flag
def ludcmp_chol(matrix, test=False): """ Decomposes/factorizes square, positive definite input matrix into one lower and one upper matrix. The upper matrix is the transpose of the lower matrix. NB. It only works on square, symmetric, positive definite matrices!!! """ if test: errortext1 = "Input matrix not positive definite in ludcmp_chol!" assert is_posdefinite(matrix), errortext1 errortext2 = "Input matrix not symmetric in ludcmp_chol!" assert is_symmetrical(matrix), errortext2 ndim = squaredim(matrix, 'ludcmp_chol') # Create new square matrix of the same size as the input matrix: clower = Matrix() clower.zero(ndim, ndim) # Perform the necessary manipulations: for k in range(0, ndim): kp1 = k + 1 for j in range(0, kp1): summ = 0.0 for i in range(0, j): summ += clower[k][i]*clower[j][i] if j == k: clower[k][j] = sqrt(matrix[k][j] - summ) else: clower[k][j] = (matrix[k][j]-summ) / float(clower[j][j]) clowert = transposed(clower) return clower, clowert
def ludcmp_chol(matrix, test=False): """ Decomposes/factorizes square, positive definite input matrix into one lower and one upper matrix. The upper matrix is the transpose of the lower matrix. NB. It only works on square, symmetric, positive definite matrices!!! """ if test: errortext1 = "Input matrix not positive definite in ludcmp_chol!" assert is_posdefinite(matrix), errortext1 errortext2 = "Input matrix not symmetric in ludcmp_chol!" assert is_symmetrical(matrix), errortext2 ndim = squaredim(matrix, 'ludcmp_chol') # Create new square matrix of the same size as the input matrix: clower = Matrix() clower.zero(ndim, ndim) # Perform the necessary manipulations: for k in range(0, ndim): kp1 = k + 1 for j in range(0, kp1): summ = 0.0 for i in range(0, j): summ += clower[k][i] * clower[j][i] if j == k: clower[k][j] = sqrt(matrix[k][j] - summ) else: clower[k][j] = (matrix[k][j] - summ) / float(clower[j][j]) clowert = transposed(clower) return clower, clowert
def _jake3(self, t, y, hf=0.5**20, ha=0.5**40): """ Auxiliary function/method used by implicit methods to compute the Jacobian. Cannot be used for dicts!!!!! """ yplus = array('d', []) yminus = array('d', []) for n in self._sequence: why = y[n] yplus.append( (1.0 + hf) * why + ha) yminus.append((1.0 - hf) * why - ha) jacob = Matrix() for n in self._sequence: derivs = array('d', []) for m in self._sequence: yn = deepcopy(y) yp = yplus[m] yn[m] = yp fp = self._model(t, yn)[n] ym = yminus[m] yn[m] = ym fm = self._model(t, yn)[n] deriv = (fp-fm) / (yp-ym) derivs.append(deriv) jacob.append(derivs) return jacob
def _fidfi(y): # fi first f = self._model(tnext, y) fi = deepcopy(f) beta = deepcopy(fi) for n in self._sequence: fi[n] = 137.0*y[n] - 300.0*s[n] + \ 300.0*self.__prev[3][n] - \ 200.0*self.__prev[2][n] + \ 75.0*self.__prev[1][n] - \ 12.0*self.__prev[0][n] - 60.0*h*f[n] beta[n] = - fi[n] # then fid = dfi[n]/dy[m] = 137*dy[n]/dy[m] - 60*h*df[n]/dy[m], # or - 60*h*df[n]/dy[m]; n != m, and # 137 - 60*h*df[n]/dy[m]; n == m jacob = self._jake3(tnext, y, hf, ha) fid = Matrix() for n in self._sequence: derivs = array('d', []) for m in self._sequence: deriv = 137.0*krond(n, m) - 60.0*h*jacob[n][m] derivs.append(deriv) fid.append(derivs) alpha = Matrix(fid) return alpha, beta
def antithet_sample(self, nparams): """ Generates a matrix having two rows, the first row being a list of uniformly distributed random numbers p in [0.0, 1.0], each row containing nparams elements. The second row contains the corresponding antithetic sample with the complements 1-p. """ rstream = self.rstream antimatrix = Matrix() # antimatrix belongs to the Matrix class for k in range(0, nparams): pvector = array('d', []) p1 = rstream.runif01() pvector.append(p1) dum = rstream.runif01() # For synchronization only - never used p2 = 1.0 - p1 p2 = kept_within(0.0, p2, 1.0) # Probabilities must be in [0.0, 1.0] pvector.append(p2) antimatrix.append(pvector) # Matrix must be transposed in order for each sample to occupy one row. # Sample vector k is in antimatrix[k], where k is 0 or 1 antimatrix.transpose() return antimatrix
def scaled(matrix, scalar): """ Multiply matrix by scalar. """ sized(matrix, 'scaled') copymx = deepcopy(matrix) return Matrix(xmap((lambda x: scalar * x), copymx))
def _fidfi(y): # fi first f = self._model(tnext, y) fi = deepcopy(f) beta = deepcopy(fi) for n in self._sequence: fi[n] = y[n] - s[n] - h*f[n] beta[n] = - fi[n] # then fid = dfi[n]/dy[m] = dy[n]/dy[m] - h*df[n]/dy[m], or # - h*df[n]/dy[m]; n != m, and # 1.0 - h*df[n]/dy[m]; n == m jacob = self._jake3(tnext, y, hf, ha) fid = Matrix() for n in self._sequence: derivs = array('d', []) for m in self._sequence: deriv = 1.0*krond(n, m) - h*jacob[n][m] derivs.append(deriv) fid.append(derivs) alpha = Matrix(fid) return alpha, beta
def ludcmp_crout(matrix): """ Decomposes/factorizes square input matrix into a lower and an upper matrix using Crout's algorithm WITHOUT pivoting. NB. It only works for square matrices!!! """ ndim = squaredim(matrix, 'ludcmp_crout') # Copy object instance to new matrix in order for the original instance # not to be destroyed. # Create two new square matrices of the same sized as the input matrix: # one unity matrix (to be the lower matrix), one zero matrix (to be # the upper matrix) copymx = deepcopy(matrix) lower = Matrix() lower.unity(ndim) upper = Matrix() upper.zero(ndim, ndim) permlist = list(range(0, ndim)) # Perform the necessary manipulations: for j in range(0, ndim): iu = 0 while iu <= j: k = 0 summ = 0.0 while k < iu: summ += lower[iu][k] * upper[k][j] k = k + 1 upper[iu][j] = copymx[iu][j] - summ iu = iu + 1 il = j + 1 while il < ndim: k = 0 summ = 0.0 while k < j: summ += lower[il][k] * upper[k][j] k = k + 1 divisor = float(upper[j][j]) if abs(divisor) < TINY: divisor = fsign(divisor) * TINY lower[il][j] = (copymx[il][j] - summ) / divisor il = il + 1 parity = 1.0 return lower, upper, permlist, parity
def _fidfi(y): # fi first f = self._model(tnext, y) fi = deepcopy(f) beta = deepcopy(fi) for n in self._sequence: fi[n] = 25.0*y[n] - 48.0*s[n] + 36.0*self.__prev[2][n] - \ 16.0*self.__prev[1][n] + \ 3.0*self.__prev[0][n] - 12.0*h*f[n] beta[n] = - fi[n] # then fid = dfi[n]/dy[m] = 3*dy[n]/dy[m] - 2*h*df[n]/dy[m], or # - 12*h*df[n]/dy[m]; n != m, and # 25 - 12*h*df[n]/dy[m]; n == m jacob = self._jake3(tnext, y, hf, ha) fid = Matrix() for n in self._sequence: derivs = array('d', []) for m in self._sequence: deriv = 25.0*krond(n, m) - 12.0*h*jacob[n][m] derivs.append(deriv) fid.append(derivs) alpha = Matrix(fid) return alpha, beta
def corrmatrix(inputmatrix): """ Computes the correlation matrix of the input matrix. Each row is assumed to contain the vector for one parameter. """ ndim = len(inputmatrix) # = the number of rows/parameters # First create unity output matrix corrmatrix = Matrix() corrmatrix.unity(ndim) # Then fill it with correlation coefficients for k in range(0, ndim): kp1 = k + 1 for j in range(0, kp1): if j != k: #amk,amj,vk,vj,covkj, rhokj = covar(inputmatrix[k], \ # inputmatrix[j]) #corrmatrix[k][j] = corrmatrix[j][k] = rhokj corrmatrix[k][j] = corrmatrix[j][k] = \ covar(inputmatrix[k], inputmatrix[j])[5] # = rhokj return corrmatrix
def transposed(matrix): """ Transpose matrix. """ nrows, ncols = sized(matrix, 'transposed') newmatrix = ncols * [float('nan')] for k in range(0, ncols): # List comprehension used for the innermost loop newmatrix[k] = array('d', [row[k] for row in matrix]) tmatrix = Matrix(newmatrix) del newmatrix '''tmatrix = Matrix(matrix) tmatrix.transpose() # would be slower''' return tmatrix
def inverted(matrix, pivoting=True): """ Only square matrices can be inverted! """ ndim = squaredim(matrix, 'inverted') # First: LU-decompose matrix to be inverted if pivoting: lower, upper, permlist, parity = ludcmp_crout_piv(matrix) else: lower, upper, permlist, parity = ludcmp_crout(matrix) # Create unity matrix unitymatrix = Matrix() unitymatrix.unity(ndim) # Loop over the columns in unity matrix and substitute # (uses the fact that rows and columns are the same in a unity matrix) columns = Matrix() columns.zero(ndim, ndim) for k in range(0, ndim): columns[k] = lusubs(lower, upper, unitymatrix[k], permlist) # preparations below for changing lusubs to handling column vector # instead of list #row = Matrix([unitymatrix[k]]) #column = transpose(row) #columns[k] = lusubs(lower, upper, column, permlist) #del column # Transpose matrix to get inverse newmatrix = ndim * [float('nan')] for k in range(0, ndim): # List comprehension is used for the innermost loop newmatrix[k] = array('d', [row[k] for row in columns]) imatrix = Matrix(newmatrix) del newmatrix return imatrix
def ludcmp_crout(matrix): """ Decomposes/factorizes square input matrix into a lower and an upper matrix using Crout's algorithm WITHOUT pivoting. NB. It only works for square matrices!!! """ ndim = squaredim(matrix, 'ludcmp_crout') # Copy object instance to new matrix in order for the original instance # not to be destroyed. # Create two new square matrices of the same sized as the input matrix: # one unity matrix (to be the lower matrix), one zero matrix (to be # the upper matrix) copymx = deepcopy(matrix) lower = Matrix() lower.unity(ndim) upper = Matrix() upper.zero(ndim, ndim) permlist = list(range(0, ndim)) # Perform the necessary manipulations: for j in range(0, ndim): iu = 0 while iu <= j: k = 0 summ = 0.0 while k < iu: summ += lower[iu][k]*upper[k][j] k = k + 1 upper[iu][j] = copymx[iu][j] - summ iu = iu + 1 il = j + 1 while il < ndim: k = 0 summ = 0.0 while k < j: summ += lower[il][k]*upper[k][j] k = k + 1 divisor = float(upper[j][j]) if abs(divisor) < TINY: divisor = fsign(divisor)*TINY lower[il][j] = (copymx[il][j]-summ) / divisor il = il + 1 parity = 1.0 return lower, upper, permlist, parity
def inverted(matrix, pivoting=True): """ Only square matrices can be inverted! """ ndim = squaredim(matrix, 'inverted') # First: LU-decompose matrix to be inverted if pivoting: lower, upper, permlist, parity = ludcmp_crout_piv(matrix) else: lower, upper, permlist, parity = ludcmp_crout(matrix) # Create unity matrix unitymatrix = Matrix() unitymatrix.unity(ndim) # Loop over the columns in unity matrix and substitute # (uses the fact that rows and columns are the same in a unity matrix) columns = Matrix() columns.zero(ndim, ndim) for k in range(0, ndim): columns[k] = lusubs(lower, upper, unitymatrix[k], permlist) # preparations below for changing lusubs to handling column vector # instead of list #row = Matrix([unitymatrix[k]]) #column = transpose(row) #columns[k] = lusubs(lower, upper, column, permlist) #del column # Transpose matrix to get inverse newmatrix = ndim*[float('nan')] for k in range(0, ndim): # List comprehension is used for the innermost loop newmatrix[k] = array('d', [row[k] for row in columns]) imatrix = Matrix(newmatrix) del newmatrix return imatrix
def ludcmp_crout_piv(matrix): """ Decomposes/factorizes square input matrix into a lower and an upper matrix using Crout's algorithm WITH pivoting. NB. It only works on square matrices!!! """ ndim = squaredim(matrix, 'ludcmp_crout_piv') ndm1 = ndim - 1 vv = array('d', ndim * [0.0]) permlist = list(range(0, ndim)) parity = 1.0 imax = 0 # Copy to matrix to be processed (maintains the original matrix intact) compactlu = deepcopy(matrix) for i in range(0, ndim): # Copy and do some other stuff big = 0.0 for j in range(0, ndim): temp = abs(compactlu[i][j]) if temp > big: big = temp assert big > 0.0 vv[i] = 1.0 / big # Perform the necessary manipulations: for j in range(0, ndim): for i in range(0, j): sum = compactlu[i][j] for k in range(0, i): sum -= compactlu[i][k] * compactlu[k][j] compactlu[i][j] = sum big = 0.0 for i in range(j, ndim): sum = compactlu[i][j] for k in range(0, j): sum -= compactlu[i][k] * compactlu[k][j] compactlu[i][j] = sum dum = vv[i] * abs(sum) if dum > big: big = dum imax = i if j != imax: # Substitute row imax and row j imaxdum = permlist[imax] # NB in !!!!!!!!!!!!!!!! jdum = permlist[j] # NB in !!!!!!!!!!!!!!!! permlist[j] = imaxdum # NB in !!!!!!!!!!!!!!!! permlist[imax] = jdum # NB in !!!!!!!!!!!!!!!! for k in range(0, ndim): dum = compactlu[imax][k] compactlu[imax][k] = compactlu[j][k] compactlu[j][k] = dum parity = -parity vv[imax] = vv[j] #permlist[j] = imax # NB out !!!!!!!!!!!!!!!!!!!!! divisor = float(compactlu[j][j]) if abs(divisor) < TINY: divisor = fsign(divisor) * TINY dum = 1.0 / divisor if j != ndm1: jp1 = j + 1 for i in range(jp1, ndim): compactlu[i][j] *= dum lower = Matrix() lower.zero(ndim, ndim) upper = Matrix() upper.zero(ndim, ndim) for i in range(0, ndim): for j in range(i, ndim): lower[j][i] = compactlu[j][i] for i in range(0, ndim): lower[i][i] = 1.0 for i in range(0, ndim): for j in range(i, ndim): upper[i][j] = compactlu[i][j] del compactlu return lower, upper, permlist, parity
def lhs_sample(self, nparams, nintervals, rcorrmatrix=None, checklevel=0): """ Generates a full Latin Hypercube Sample of uniformly distributed random variates in [0.0, 1.0] placed in a matrix with one realization in each row. A target rank correlation matrix can be given (must have the dimension nsamples*nsamples). checklevel may be 0, 1 or 2 and is used to control trace printout. 0 produces no trace output, whereas 2 produces the most. NB. IN ORDER FOR LATIN HYPERCUBE SAMPLING TO BE MEANINGFUL THE OUTPUT STREAM OF RANDOM VARIATES MUST BE HANDLED BY INVERSE METHODS !!!! Latin Hypercube Sampling was first described by McKay, Conover & Beckman in a Technometrics article 1979. The use of the LHS technique to introduce rank correlations was first described by Iman & Conover 1982 in an issue of Communications of Statistics. """ # lhs_sample uses the Matrix class to a great extent if nparams > nintervals: warn("nparams > nintervals in RandomStructure.lhs_sample") nsamples = nintervals # Just to remember rstreaminner = self.rstream rstreamouter = self.rstream2 factor = 1.0 / float(nintervals) tlhsmatrix1 = Matrix() # tlhsmatrix1 belongs to the Matrix class if rcorrmatrix: tscorematrix = Matrix() for k in range(0, nparams): if rcorrmatrix: tnvector, tscorevector = \ self.scramble_range(nsamples, rstreamouter, True) rowk = array('d', tscorevector) tscorematrix.append(rowk) else: tnvector = self.scramble_range(nsamples, rstreamouter) pvector = array('d', []) for number in tnvector: p = factor * (float(number) + rstreaminner.runif01()) p = max(p, 0.0) # Probabilities must be in [0.0, 1.0] p = min(p, 1.0) pvector.append(p) tlhsmatrix1.append(pvector) # tlhsmatrix1 (and tscorematrix) are now transposed to run with # one subsample per row to fit with output as well as Iman-Conover # formulation. tlhsmatrix1 and tscorematrix will be used anyway # for some manipulations which are more simple when matrices run # with one variable per row lhsmatrix1 = transposed(tlhsmatrix1) if rcorrmatrix: scorematrix = transposed(tscorematrix) if checklevel == 2: print("lhs_sample: Original LHS sample matrix") mxdisplay(lhsmatrix1) if rcorrmatrix: print("lhs_sample: Target rank correlation matrix") mxdisplay(rcorrmatrix) if checklevel == 1 or checklevel == 2: print("lhs_sample: Rank correlation matrix of") print(" original LHS sample matrix") trankmatrix1 = Matrix() for k in range(0, nparams): rowk = array('d', extract_ranks(tlhsmatrix1[k])) trankmatrix1.append(rowk) mxdisplay(Matrix(corrmatrix(trankmatrix1))) if not rcorrmatrix: return lhsmatrix1 else: scorecorr = Matrix(corrmatrix(tscorematrix)) if checklevel == 2: print("lhs_sample: Score matrix of original LHS sample matrix") mxdisplay(scorematrix) print("lhs_sample: Correlation matrix of scores of") print(" original LHS sample") mxdisplay(scorecorr) slower, slowert = ludcmp_chol(scorecorr) slowerinverse = inverted(slower) tslowerinverse = transposed(slowerinverse) clower, clowert = ludcmp_chol(rcorrmatrix) scoresnostar = scorematrix * tslowerinverse # Matrix multiplication if checklevel == 2: print("lhs_sample: Correlation matrix of scoresnostar") mxdisplay(corrmatrix(transposed(scoresnostar))) scoresstar = scoresnostar * clowert # Matrix multiplication tscoresstar = transposed(scoresstar) trankmatrix = Matrix() for k in range(0, nparams): trankmatrix.append(extract_ranks(tscoresstar[k])) if checklevel == 2: print("lhs_sample: scoresstar matrix") mxdisplay(scoresstar) print("lhs_sample: Correlation matrix of scoresstar") mxdisplay(corrmatrix(tscoresstar)) print("lhs_sample: scoresstar matrix converted to rank") mxdisplay(transposed(trankmatrix)) for k in range(0, nparams): tlhsmatrix1[k] = array('d', sorted(list(tlhsmatrix1[k]))) print("RandomStructure.lhs_sample: Sorted LHS sample matrix") mxdisplay(transposed(tlhsmatrix1)) tlhsmatrix2 = Matrix() for k in range(0, nparams): # Sort each row in tlhsmatrix1 and reorder # according to trankmatrix rows auxvec = reorder(tlhsmatrix1[k], trankmatrix[k], \ straighten=True) tlhsmatrix2.append(auxvec) lhsmatrix2 = transposed(tlhsmatrix2) if checklevel == 2: print("lhs_sample: Corrected/reordered LHS sample matrix") mxdisplay(transposed(tlhsmatrix2)) if checklevel == 1 or checklevel == 2: trankmatrix2 = Matrix() auxmatrix2 = tlhsmatrix2 for k in range(0, nparams): trankmatrix2.append(extract_ranks(auxmatrix2[k])) print("lhs_sample: Rank correlation matrix of corrected/") print(" /reordered LHS sample matrix") mxdisplay(corrmatrix(trankmatrix2)) return lhsmatrix2
def ludcmp_crout_piv(matrix): """ Decomposes/factorizes square input matrix into a lower and an upper matrix using Crout's algorithm WITH pivoting. NB. It only works on square matrices!!! """ ndim = squaredim(matrix, 'ludcmp_crout_piv') ndm1 = ndim - 1 vv = array('d', ndim*[0.0]) permlist = list(range(0, ndim)) parity = 1.0 imax = 0 # Copy to matrix to be processed (maintains the original matrix intact) compactlu = deepcopy(matrix) for i in range(0, ndim): # Copy and do some other stuff big = 0.0 for j in range(0, ndim): temp = abs(compactlu[i][j]) if temp > big: big = temp assert big > 0.0 vv[i] = 1.0/big # Perform the necessary manipulations: for j in range(0, ndim): for i in range(0, j): sum = compactlu[i][j] for k in range(0, i): sum -= compactlu[i][k] * compactlu[k][j] compactlu[i][j] = sum big = 0.0 for i in range(j, ndim): sum = compactlu[i][j] for k in range(0, j): sum -= compactlu[i][k] * compactlu[k][j] compactlu[i][j] = sum dum = vv[i] * abs(sum) if dum > big: big = dum imax = i if j != imax: # Substitute row imax and row j imaxdum = permlist[imax] # NB in !!!!!!!!!!!!!!!! jdum = permlist[j] # NB in !!!!!!!!!!!!!!!! permlist[j] = imaxdum # NB in !!!!!!!!!!!!!!!! permlist[imax] = jdum # NB in !!!!!!!!!!!!!!!! for k in range(0, ndim): dum = compactlu[imax][k] compactlu[imax][k] = compactlu[j][k] compactlu[j][k] = dum parity = - parity vv[imax] = vv[j] #permlist[j] = imax # NB out !!!!!!!!!!!!!!!!!!!!! divisor = float(compactlu[j][j]) if abs(divisor) < TINY: divisor = fsign(divisor)*TINY dum = 1.0 / divisor if j != ndm1: jp1 = j + 1 for i in range(jp1, ndim): compactlu[i][j] *= dum lower = Matrix() lower.zero(ndim, ndim) upper = Matrix() upper.zero(ndim, ndim) for i in range(0, ndim): for j in range(i, ndim): lower[j][i] = compactlu[j][i] for i in range(0, ndim): lower[i][i] = 1.0 for i in range(0, ndim): for j in range(i, ndim): upper[i][j] = compactlu[i][j] del compactlu return lower, upper, permlist, parity
def nelder_mead(objfunc, point0, spans, \ trace=False, tolf=SQRTMACHEPS, tola=SQRTTINY, maxniter=256, \ rho=1.0, xsi=2.0, gamma=0.5, sigma=0.5): """ The Nelder & Mead downhill simplex method is designed to find the minimum of an objective function that has a multi-dimensional input, (see for instance Lagarias et al. (1998), "Convergence Properties of the Nelder-Mead Simplex in Low Dimensions", SIAM J. Optim., Society for Industrial and Applied Mathematics Vol. 9, No. 1, pp. 112-147 for details). The algorithm is said to first have been presented by Nelder and Mead in Computer Journal, Vol. 7, pp. 308-313 (1965). The initial simplex must be entered by entering an initial point (an array of coordinates), plus an array of spans for the corresponding point coordinates. For trace=True a trace is printed to stdout consisting of the present number of iterations, the present low value of the objective function, the present value of the absolute value of difference between the high and the low value of the objective function, and the present list of vertices of the low value of the objective function = the present "best" point. tolf is the fractional tolerance and tola is the absolute tolerance of the absolute value of difference between the high and the low value of the objective function. maxniter is the maximum allowed number of iterations. rho, xsi, gamma and sigma are the parameters for reflection, expansion, contraction and shrinkage, respectively (cf. the references above). """ # Check the input parameters assert is_nonneginteger(maxniter), \ "max number of iterations must be a non-negative integer in nelder_mead!" if tolf < MACHEPS: tolf = MACHEPS wtext = "fractional tolerance smaller than machine epsilon is not " wtext += "recommended in nelder_mead. Machine epsilon is used instead" warn(wtext) assert rho > 0.0, "rho must be positive in nelder_mead!" assert xsi > 1.0, "xsi must be > 1.0 in nelder_mead!" assert xsi > rho, "xsi must be > rho in nelder_mead!" assert 0.0 < gamma < 1.0, "gamma must be in (0.0, 1.0) in nelder_mead!" assert 0.0 < sigma < 1.0, "sigma be in (0.0, 1.0) in nelder_mead!" assert tola >= 0.0, "absolute tolerance must be positive in nelder_mead!" # Prepare matrix of vertices ndim = len(point0) assert len(spans) == ndim vertices = Matrix() vertices.append(array('d', list(point0))) ndimp1 = ndim + 1 fndim = float(ndim) for j in range(0, ndim): vertices.append(array('d', list(point0))) for j in range(0, ndim): vertices[j+1][j] += spans[j] # Prepare a few variants of parameters oneprho = 1.0 + rho # LOOP!!!!!!!! niter = 0 while True: niter += 1 if niter > maxniter: txt1 = "nelder_mead did not converge. Absolute error = " txt2 = str(abs(high-low)) + " for " + str(niter-1) txt3 = " iterations. Consider new tols or maxniter!" raise Error(txt1+txt2+txt3) # Compute the objective function values for the vertices flist = array('d', []) for k in range(0, ndimp1): fk = objfunc(vertices[k]) flist.append(fk) # Establish the highest point, the next highest point and the lowest low = flist[0] high = nxhi = low ilow = 0 ihigh = 0 for k in range(1, ndimp1): fk = flist[k] if fk > high: nxhi = high high = fk ihigh = k elif fk < low: low = fk ilow = k if trace: print(niter, low, abs(high-low), list(vertices[ilow])) if low < tola: tol = tola else: tol = abs(low)*tolf if abs(high-low) < tol: return low, list(vertices[ilow]) # Reflect the high point # First find a new vertix = the centroid of the non-max vertices cntr = array('d', ndim*[float('nan')]) newr = array('d', ndim*[float('nan')]) for j in range(0, ndim): xsum = 0.0 for k in range(0, ndimp1): if k != ihigh: xsum += vertices[k][j] cntr[j] = xsum/fndim # Then move from the centroid in an away-from-max direction for j in range(0, ndim): newr[j] = oneprho*cntr[j] - rho*vertices[ihigh][j] # Check the new vertix accepted = False phir = objfunc(newr) if low <= phir < nxhi: # Everything is OK! if trace: print("Reflection sufficient") vertices[ihigh] = newr phi = phir accepted = True elif phir < low: # Expand: if trace: print("Expansion") newe = array('d', ndim*[float('nan')]) for j in range(0, ndim): newe[j] = cntr[j] + xsi*(newr[j]-cntr[j]) phie = objfunc(newe) if phie < phir: vertices[ihigh] = newe phi = phie else: vertices[ihigh] = newr phi = phir accepted = True elif phir >= nxhi: # Contract if phir < high: # -outside: if trace: print("Outside contraction") newo = array('d', ndim*[float('nan')]) for j in range(0, ndim): newo[j] = cntr[j] + gamma*(newr[j]-cntr[j]) phio = objfunc(newo) if phio <= phir: vertices[ihigh] = newo phi = phio accepted = True else: # -inside: if trace: print("Inside contraction") newi = array('d', ndim*[float('nan')]) for j in range(0, ndim): newi[j] = cntr[j] - gamma*(cntr[j]-vertices[ihigh][j]) phii = objfunc(newi) if phii <= high: vertices[ihigh] = newi phi = phii accepted = True if not accepted: # Shrink: if trace: print("Shrinkage") for k in range(0, ndimp1): for j in range(j, ndim): vertices[k][j] = vertices[ilow][j] + sigma*(vertices[k][j] - vertices[ilow][j]) # end of nelder_mead # ------------------------------------------------------------------------------
def lhs_sample(self, nparams, nintervals, rcorrmatrix=None, checklevel=0): """ Generates a full Latin Hypercube Sample of uniformly distributed random variates in [0.0, 1.0] placed in a matrix with one realization in each row. A target rank correlation matrix can be given (must have the dimension nsamples*nsamples). checklevel may be 0, 1 or 2 and is used to control trace printout. 0 produces no trace output, whereas 2 produces the most. NB. IN ORDER FOR LATIN HYPERCUBE SAMPLING TO BE MEANINGFUL THE OUTPUT STREAM OF RANDOM VARIATES MUST BE HANDLED BY INVERSE METHODS !!!! Latin Hypercube Sampling was first described by McKay, Conover & Beckman in a Technometrics article 1979. The use of the LHS technique to introduce rank correlations was first described by Iman & Conover 1982 in an issue of Communications of Statistics. """ # lhs_sample uses the Matrix class to a great extent if nparams > nintervals: warn("nparams > nintervals in RandomStructure.lhs_sample") nsamples = nintervals # Just to remember rstreaminner = self.rstream rstreamouter = self.rstream2 factor = 1.0 / float(nintervals) tlhsmatrix1 = Matrix() # tlhsmatrix1 belongs to the Matrix class if rcorrmatrix: tscorematrix = Matrix() for k in range(0, nparams): if rcorrmatrix: tnvector, tscorevector = \ self.scramble_range(nsamples, rstreamouter, True) rowk = array('d', tscorevector) tscorematrix.append(rowk) else: tnvector = self.scramble_range(nsamples, rstreamouter) pvector = array('d', []) for number in tnvector: p = factor * (float(number) + rstreaminner.runif01()) p = max(p, 0.0) # Probabilities must be in [0.0, 1.0] p = min(p, 1.0) pvector.append(p) tlhsmatrix1.append(pvector) # tlhsmatrix1 (and tscorematrix) are now transposed to run with # one subsample per row to fit with output as well as Iman-Conover # formulation. tlhsmatrix1 and tscorematrix will be used anyway # for some manipulations which are more simple when matrices run # with one variable per row lhsmatrix1 = transposed(tlhsmatrix1) if rcorrmatrix: scorematrix = transposed(tscorematrix) if checklevel == 2: print("lhs_sample: Original LHS sample matrix") mxdisplay(lhsmatrix1) if rcorrmatrix: print("lhs_sample: Target rank correlation matrix") mxdisplay(rcorrmatrix) if checklevel == 1 or checklevel == 2: print("lhs_sample: Rank correlation matrix of") print(" original LHS sample matrix") trankmatrix1 = Matrix() for k in range (0, nparams): rowk = array('d', extract_ranks(tlhsmatrix1[k])) trankmatrix1.append(rowk) mxdisplay(Matrix(corrmatrix(trankmatrix1))) if not rcorrmatrix: return lhsmatrix1 else: scorecorr = Matrix(corrmatrix(tscorematrix)) if checklevel == 2: print("lhs_sample: Score matrix of original LHS sample matrix") mxdisplay(scorematrix) print("lhs_sample: Correlation matrix of scores of") print(" original LHS sample") mxdisplay(scorecorr) slower, slowert = ludcmp_chol(scorecorr) slowerinverse = inverted(slower) tslowerinverse = transposed(slowerinverse) clower, clowert = ludcmp_chol(rcorrmatrix) scoresnostar = scorematrix*tslowerinverse # Matrix multiplication if checklevel == 2: print("lhs_sample: Correlation matrix of scoresnostar") mxdisplay(corrmatrix(transposed(scoresnostar))) scoresstar = scoresnostar*clowert # Matrix multiplication tscoresstar = transposed(scoresstar) trankmatrix = Matrix() for k in range (0, nparams): trankmatrix.append(extract_ranks(tscoresstar[k])) if checklevel == 2: print("lhs_sample: scoresstar matrix") mxdisplay(scoresstar) print("lhs_sample: Correlation matrix of scoresstar") mxdisplay(corrmatrix(tscoresstar)) print("lhs_sample: scoresstar matrix converted to rank") mxdisplay(transposed(trankmatrix)) for k in range(0, nparams): tlhsmatrix1[k] = array('d', sorted(list(tlhsmatrix1[k]))) print("RandomStructure.lhs_sample: Sorted LHS sample matrix") mxdisplay(transposed(tlhsmatrix1)) tlhsmatrix2 = Matrix() for k in range(0, nparams): # Sort each row in tlhsmatrix1 and reorder # according to trankmatrix rows auxvec = reorder(tlhsmatrix1[k], trankmatrix[k], \ straighten=True) tlhsmatrix2.append(auxvec) lhsmatrix2 = transposed(tlhsmatrix2) if checklevel == 2: print("lhs_sample: Corrected/reordered LHS sample matrix") mxdisplay(transposed(tlhsmatrix2)) if checklevel == 1 or checklevel == 2: trankmatrix2 = Matrix() auxmatrix2 = tlhsmatrix2 for k in range (0, nparams): trankmatrix2.append(extract_ranks(auxmatrix2[k])) print("lhs_sample: Rank correlation matrix of corrected/") print(" /reordered LHS sample matrix") mxdisplay(corrmatrix(trankmatrix2)) return lhsmatrix2