Пример #1
0
def test_weight():
    # Test class weights
    X_, y_ = make_classification(n_samples=200,
                                 n_features=100,
                                 weights=[0.833, 0.167],
                                 random_state=0)

    X_ = sparse.csr_matrix(X_)
    for clf in (linear_model.LogisticRegression(),
                svm.LinearSVC(random_state=0), svm.SVC()):
        clf.set_params(class_weight={0: 5})
        clf.fit(X_[:180], y_[:180])
        y_pred = clf.predict(X_[180:])
        assert np.sum(y_pred == y_[180:]) >= 11
Пример #2
0
def test_weight():
    # Test class weights
    clf = svm.SVC(class_weight={1: 0.1})
    # we give a small weights to class 1
    clf.fit(X, Y)
    # so all predicted values belong to class 2
    assert_array_almost_equal(clf.predict(X), [2] * 6)

    X_, y_ = make_classification(n_samples=200,
                                 n_features=10,
                                 weights=[0.833, 0.167],
                                 random_state=2)

    for clf in (linear_model.LogisticRegression(),
                svm.LinearSVC(random_state=0), svm.SVC()):
        clf.set_params(class_weight={0: .1, 1: 10})
        clf.fit(X_[:100], y_[:100])
        y_pred = clf.predict(X_[100:])
        assert f1_score(y_[100:], y_pred) > .3
Пример #3
0
X = X[y != 2]
y = y[y != 2]

X /= X.max()  # Normalize X to speed-up convergence

# #############################################################################
# Demo path functions

cs = l1_min_c(X, y, loss='log') * np.logspace(0, 7, 16)

print("Computing regularization path ...")
start = time()
clf = linear_model.LogisticRegression(penalty='l1',
                                      solver='saga',
                                      tol=1e-6,
                                      max_iter=int(1e6),
                                      warm_start=True)
coefs_ = []
for c in cs:
    clf.set_params(C=c)
    clf.fit(X, y)
    coefs_.append(clf.coef_.ravel().copy())
print("This took %0.3fs" % (time() - start))

coefs_ = np.array(coefs_)
plt.plot(np.log10(cs), coefs_, marker='o')
ymin, ymax = plt.ylim()
plt.xlabel('log(C)')
plt.ylabel('Coefficients')
plt.title('Logistic Regression Path')
Пример #4
0
from mrex import linear_model
from scipy.special import expit

# General a toy dataset:s it's just a straight line with some Gaussian noise:
xmin, xmax = -5, 5
n_samples = 100
np.random.seed(0)
X = np.random.normal(size=n_samples)
y = (X > 0).astype(np.float)
X[X > 0] *= 4
X += .3 * np.random.normal(size=n_samples)

X = X[:, np.newaxis]

# Fit the classifier
clf = linear_model.LogisticRegression(C=1e5)
clf.fit(X, y)

# and plot the result
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.scatter(X.ravel(), y, color='black', zorder=20)
X_test = np.linspace(-5, 10, 300)

loss = expit(X_test * clf.coef_ + clf.intercept_).ravel()
plt.plot(X_test, loss, color='red', linewidth=3)

ols = linear_model.LinearRegression()
ols.fit(X, y)
plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1)
plt.axhline(.5, color='.5')
Пример #5
0
Digits Classification Exercise
================================

A tutorial exercise regarding the use of classification techniques on
the Digits dataset.

This exercise is used in the :ref:`clf_tut` part of the
:ref:`supervised_learning_tut` section of the
:ref:`stat_learn_tut_index`.
"""
print(__doc__)

from mrex import datasets, neighbors, linear_model

X_digits, y_digits = datasets.load_digits(return_X_y=True)
X_digits = X_digits / X_digits.max()

n_samples = len(X_digits)

X_train = X_digits[:int(.9 * n_samples)]
y_train = y_digits[:int(.9 * n_samples)]
X_test = X_digits[int(.9 * n_samples):]
y_test = y_digits[int(.9 * n_samples):]

knn = neighbors.KNeighborsClassifier()
logistic = linear_model.LogisticRegression(max_iter=1000)

print('KNN score: %f' % knn.fit(X_train, y_train).score(X_test, y_test))
print('LogisticRegression score: %f'
      % logistic.fit(X_train, y_train).score(X_test, y_test))
Пример #6
0
    return X, Y


# Load Data
X, y = datasets.load_digits(return_X_y=True)
X = np.asarray(X, 'float32')
X, Y = nudge_dataset(X, y)
X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001)  # 0-1 scaling

X_train, X_test, Y_train, Y_test = train_test_split(X,
                                                    Y,
                                                    test_size=0.2,
                                                    random_state=0)

# Models we will use
logistic = linear_model.LogisticRegression(solver='newton-cg', tol=1)
rbm = BernoulliRBM(random_state=0, verbose=True)

rbm_features_classifier = Pipeline(steps=[('rbm', rbm), ('logistic',
                                                         logistic)])

# #############################################################################
# Training

# Hyper-parameters. These were set by cross-validation,
# using a GridSearchCV. Here we are not performing cross-validation to
# save time.
rbm.learning_rate = 0.06
rbm.n_iter = 10
# More components tend to give better prediction performance, but larger
# fitting time