def plot_neuron_on_density( population, # pylint: disable=too-many-arguments bins=100, new_fig=True, subplot=111, levels=None, plane='xy', colorlabel='Nodes per unit area', labelfontsize=16, color_map='Reds', no_colorbar=False, threshold=0.01, neurite_type=NeuriteType.basal_dendrite, **kwargs): '''Plots the 2d histogram of the center coordinates of segments in the selected plane and superimposes the view of the first neurite of the collection. ''' view.tree(population.neurites[0], new_fig=new_fig) return plot_density(population, plane=plane, bins=bins, new_fig=False, subplot=subplot, colorlabel=colorlabel, labelfontsize=labelfontsize, levels=levels, color_map=color_map, no_colorbar=no_colorbar, threshold=threshold, neurite_type=neurite_type, **kwargs)
def test_one_point_branch_without_diameter(): test_tree = PointTree(np.array([1., 1., 1., 0.5, 2, 1, 0])) try: view.tree(test_tree, diameter=False) nt.ok_(True) except: nt.ok_(False)
def plot_neuron_on_density(population, # pylint: disable=too-many-arguments bins=100, new_fig=True, subplot=111, levels=None, plane='xy', colorlabel='Nodes per unit area', labelfontsize=16, color_map='Reds', no_colorbar=False, threshold=0.01, neurite_type=NeuriteType.basal_dendrite, **kwargs): '''Plots the 2d histogram of the center coordinates of segments in the selected plane and superimposes the view of the first neurite of the collection. ''' view.tree(population.neurites[0], new_fig=new_fig) return plot_density(population, plane=plane, bins=bins, new_fig=False, subplot=subplot, colorlabel=colorlabel, labelfontsize=labelfontsize, levels=levels, color_map=color_map, no_colorbar=no_colorbar, threshold=threshold, neurite_type=neurite_type, **kwargs)
def test_tree(): axes = [] for tree in pt_neuron.neurites: fig, ax = view.tree(tree) axes.append(ax) nt.ok_(axes[0].get_data_ratio() > 1.00 ) nt.ok_(axes[1].get_data_ratio() > 0.80 ) nt.ok_(axes[2].get_data_ratio() > 1.00 ) nt.ok_(axes[3].get_data_ratio() > 0.85 ) tree0 = pt_neuron.neurites[0] fig, ax = view.tree(tree0, treecolor='black', diameter=False, alpha=1., linewidth=1.2) c = ax.collections[0] nt.ok_(c.get_linewidth()[0] == 1.2 ) nt.ok_(np.allclose(c.get_color(), np.array([[ 0., 0., 0., 1.]])) ) fig, ax = view.tree(tree0, plane='wrong') nt.ok_(ax == 'No such plane found! Please select one of: xy, xz, yx, yz, zx, zy.') plt.close('all')
def test_tree(): axes = [] for tree in fst_neuron.neurites: fig, ax = view.tree(tree) axes.append(ax) nt.ok_(axes[0].get_data_ratio() > 1.00 ) nt.ok_(axes[1].get_data_ratio() > 0.80 ) nt.ok_(axes[2].get_data_ratio() > 1.00 ) nt.ok_(axes[3].get_data_ratio() > 0.85 ) tree0 = fst_neuron.neurites[0] fig, ax = view.tree(tree0, treecolor='black', diameter=False, alpha=1., linewidth=1.2) c = ax.collections[0] nt.eq_(c.get_linewidth()[0], 1.2) nt.ok_(np.allclose(c.get_color(), np.array([[ 0., 0., 0., 1.]]))) fig, ax = view.tree(tree0, plane='wrong') nt.ok_(ax == 'No such plane found! Please select one of: xy, xz, yx, yz, zx, zy.') plt.close('all')
def test_one_point_branch(): test_section = Section(points=np.array([[1., 1., 1., 0.5, 2, 1, 0]])) for diameter, linewidth in it.product((True, False), (0.0, 1.2)): view.tree(test_section, diameter=diameter, linewidth=linewidth) view.tree3d(test_section, diameter=diameter, linewidth=linewidth)