Пример #1
0
def benchmarks(house_id):

    redd_train = DataSet(REDD_FILE)
    redd_test = DataSet(REDD_FILE)

    # set up training and test sets
    redd_train.set_window(end=TRAIN_END)
    redd_test.set_window(start=TRAIN_END)

    # get top N_DEV devices
    house = redd_train.buildings[house_id]
    test_elec = redd_test.buildings[house_id].elec
    top_apps = house.elec.submeters().select_top_k(k=N_DEV)

    # store mains data
    test_mains = next(test_elec.mains().load())


    truth = {}
    predictions = {}

    # benchmark classifier 1
    co = CombinatorialOptimisation()

    start = time.time()
    print("*" *20)
    print('Combinatorial Optimisation: ')
    print("*" *20)

    co.train(top_apps, sample_period=SAMPLE_PERIOD)
    truth['CO'], predictions['CO'] = predict(co, test_elec, SAMPLE_PERIOD, redd_train.metadata['timezone'])
    end = time.time()
    print("Runtime: ", end-start)


    # benchmark classifier 2
    fhmm = FHMM()

    start = time.time()
    print("*" *20)
    print('Factorial Hidden Markov Model: ')
    print("*" *20)

    fhmm.train(top_apps, sample_period=SAMPLE_PERIOD)
    truth['FHMM'], predictions['FHMM'] = predict(fhmm, test_elec, SAMPLE_PERIOD, redd_train.metadata['timezone'])

    end = time.time()
    print("Runtime: ", end-start)


    # add mains to truth
    truth['CO']['Main'] = test_mains
    truth['FHMM']['Main'] = test_mains

    return truth, predictions
Пример #2
0
    def test_fhmm_correctness(self):
        elec = self.dataset.buildings[1].elec
        fhmm = FHMM()
        fhmm.train(elec)
        mains = elec.mains()
        output = HDFDataStore('output.h5', 'w')
        fhmm.disaggregate(mains, output, sample_period=1)

        for meter in range(2, 4):
            df1 = output.store.get('/building1/elec/meter{}'.format(meter))
            df2 = self.dataset.store.store.get(
                '/building1/elec/meter{}'.format(meter))

            self.assertEqual((df1 == df2).sum().values[0], len(df1.index))
            self.assertEqual(len(df1.index), len(df2.index))
        output.close()
        remove("output.h5")
Пример #3
0
    def test_fhmm_correctness(self):
        elec = self.dataset.buildings[1].elec
        fhmm = FHMM()
        fhmm.train(elec)
        mains = elec.mains()
        output = HDFDataStore('output.h5', 'w')
        fhmm.disaggregate(mains, output, sample_period=1)

        for meter in range(2, 4):
            df1 = output.store.get('/building1/elec/meter{}'.format(meter))
            df2 = self.dataset.store.store.get(
                '/building1/elec/meter{}'.format(meter))

            self.assertEqual((df1 == df2).sum().values[0], len(df1.index))
            self.assertEqual(len(df1.index), len(df2.index))
        output.close()
        remove("output.h5")
Пример #4
0
def fhmm(dataset_path, train_building, train_start, train_end, val_building,
         val_start, val_end, test_building, test_start, test_end, meter_key,
         sample_period):

    # Start tracking time
    start = time.time()

    # Prepare dataset and options
    # print("========== OPEN DATASETS ============")
    dataset_path = dataset_path
    train = DataSet(dataset_path)
    train.set_window(start=train_start, end=train_end)
    val = DataSet(dataset_path)
    val.set_window(start=val_start, end=val_end)
    test = DataSet(dataset_path)
    test.set_window(start=test_start, end=test_end)
    train_building = train_building
    test_building = test_building
    meter_key = meter_key

    sample_period = sample_period

    train_elec = train.buildings[train_building].elec
    val_elec = val.buildings[val_building].elec
    test_elec = test.buildings[test_building].elec

    appliances = [meter_key]
    selected_meters = [train_elec[app] for app in appliances]
    selected_meters.append(train_elec.mains())
    selected = MeterGroup(selected_meters)

    fhmm = FHMM()

    # print("========== TRAIN ============")
    fhmm.train(selected, sample_period=sample_period)

    # print("========== DISAGGREGATE ============")
    # Validation
    val_disag_filename = 'disag-out-val.h5'
    output = HDFDataStore(val_disag_filename, 'w')
    fhmm.disaggregate(val_elec.mains(), output_datastore=output)
    output.close()
    # Test
    test_disag_filename = 'disag-out-test.h5'
    output = HDFDataStore(test_disag_filename, 'w')
    fhmm.disaggregate(test_elec.mains(), output_datastore=output)
    output.close()

    # print("========== RESULTS ============")
    # Validation
    result_val = DataSet(val_disag_filename)
    res_elec_val = result_val.buildings[val_building].elec
    rpaf_val = metrics.recall_precision_accuracy_f1(res_elec_val[meter_key],
                                                    val_elec[meter_key])

    val_metrics_results_dict = {
        'recall_score':
        rpaf_val[0],
        'precision_score':
        rpaf_val[1],
        'accuracy_score':
        rpaf_val[2],
        'f1_score':
        rpaf_val[3],
        'mean_absolute_error':
        metrics.mean_absolute_error(res_elec_val[meter_key],
                                    val_elec[meter_key]),
        'mean_squared_error':
        metrics.mean_square_error(res_elec_val[meter_key],
                                  val_elec[meter_key]),
        'relative_error_in_total_energy':
        metrics.relative_error_total_energy(res_elec_val[meter_key],
                                            val_elec[meter_key]),
        'nad':
        metrics.nad(res_elec_val[meter_key], val_elec[meter_key]),
        'disaggregation_accuracy':
        metrics.disaggregation_accuracy(res_elec_val[meter_key],
                                        val_elec[meter_key])
    }
    # Test
    result = DataSet(test_disag_filename)
    res_elec = result.buildings[test_building].elec
    rpaf = metrics.recall_precision_accuracy_f1(res_elec[meter_key],
                                                test_elec[meter_key])

    test_metrics_results_dict = {
        'recall_score':
        rpaf[0],
        'precision_score':
        rpaf[1],
        'accuracy_score':
        rpaf[2],
        'f1_score':
        rpaf[3],
        'mean_absolute_error':
        metrics.mean_absolute_error(res_elec[meter_key], test_elec[meter_key]),
        'mean_squared_error':
        metrics.mean_square_error(res_elec[meter_key], test_elec[meter_key]),
        'relative_error_in_total_energy':
        metrics.relative_error_total_energy(res_elec[meter_key],
                                            test_elec[meter_key]),
        'nad':
        metrics.nad(res_elec[meter_key], test_elec[meter_key]),
        'disaggregation_accuracy':
        metrics.disaggregation_accuracy(res_elec[meter_key],
                                        test_elec[meter_key])
    }

    # end tracking time
    end = time.time()

    time_taken = end - start  # in seconds

    # model_result_data = {
    #     'algorithm_name': 'FHMM',
    #     'datapath': dataset_path,
    #     'train_building': train_building,
    #     'train_start': str(train_start.date()) if train_start != None else None ,
    #     'train_end': str(train_end.date()) if train_end != None else None ,
    #     'test_building': test_building,
    #     'test_start': str(test_start.date()) if test_start != None else None ,
    #     'test_end': str(test_end.date()) if test_end != None else None ,
    #     'appliance': meter_key,
    #     'sampling_rate': sample_period,
    #
    #     'algorithm_info': {
    #         'options': {
    #             'epochs': None
    #         },
    #         'hyperparameters': {
    #             'sequence_length': None,
    #             'min_sample_split': None,
    #             'num_layers': None
    #         },
    #         'profile': {
    #             'parameters': None
    #         }
    #     },
    #
    #     'metrics':  metrics_results_dict,
    #
    #     'time_taken': format(time_taken, '.2f'),
    # }

    model_result_data = {
        'val_metrics': val_metrics_results_dict,
        'test_metrics': test_metrics_results_dict,
        'time_taken': format(time_taken, '.2f'),
        'epochs': None,
    }

    # Close digag_filename
    result.store.close()
    result_val.store.close()

    # Close Dataset files
    train.store.close()
    val.store.close()
    test.store.close()

    return model_result_data
out = {}
for b_id, building in building_chunk_items[home_group]:

    try:
        if b_id in existing_files_names:
            print("Skipping", b_id)
            continue
        print b_id

        out[b_id] = {}
        start = time.time()
        #cls_dict = {"Hart":Hart85()}
        cls_dict = {
            "CO": CombinatorialOptimisation(),
            "FHMM": FHMM(),
            "Hart": Hart85()
        }
        elec = building.elec
        mains = elec.mains()

        train = DataSet(ds_path)
        test = DataSet(ds_path)
        split_point = datetime.date(2013, 7, 16)
        train.set_window(end=split_point)
        #test.set_window(start=split_point)
        train_elec = train.buildings[b_id].elec
        test_elec = test.buildings[b_id].elec
        test_mains = test_elec.mains()

        # AC elec
Пример #6
0
    #Intersection of index
    gt_index_utc = gt_overall.index.tz_convert("UTC")
    pred_index_utc = pred_overall.index.tz_convert("UTC")
    common_index_utc = gt_index_utc.intersection(pred_index_utc)

    common_index_local = common_index_utc.tz_convert(timezone)
    gt_overall = gt_overall.ix[common_index_local]
    pred_overall = pred_overall.ix[common_index_local]
    appliance_labels = [m.label() for m in gt_overall.columns.values]
    gt_overall.columns = appliance_labels
    pred_overall.columns = appliance_labels
    return gt_overall, pred_overall


#Run classifiers CO and FHMM
classifiers = {'CO': CombinatorialOptimisation(), 'FHMM': FHMM()}
predictions = {}
sample_period = 6
for clf_name, clf in classifiers.iteritems():
    print("*" * 20)
    print(clf_name)
    print("*" * 20)
    clf.train(top_5_train_elec, sample_period=sample_period)
    gt, predictions[clf_name] = predict(clf, test_elec, 6,
                                        train.metadata['timezone'])


#Evaluate algorithms by rmse metric
def compute_rmse(gt, pred):
    from sklearn.metrics import mean_squared_error
    rms_error = {}
Пример #7
0
train.set_window(end="2011-04-30")
test.set_window(start="2011-04-30")

train_elec = train.buildings[1].elec
test_elec = test.buildings[1].elec


top_5_train_elec = train_elec.submeters().select_top_k(k=5)

np.random.seed(42)

params = {}
#classifiers = {'CO':CombinatorialOptimisation(), 'FHMM':FHMM()}
predictions = {}
sample_period = 120

co = CombinatorialOptimisation()
fhmm = FHMM()

## Train models
co.train(top_5_train_elec, sample_period=sample_period)
fhmm.train(top_5_train_elec, sample_period=sample_period)

## Export models
co.export_model(filename='co.h5')
fhmm.export_model(filename='fhmm.h5')

co.import_model(filename='co.h5')
fhmm.import_model(filename='fhmm.h5')

Пример #8
0
    
    
    common_index_local = common_index_utc.tz_convert(timezone)
    gt_overall = gt_overall.loc[common_index_local]
    pred_overall = pred_overall.loc[common_index_local]
    appliance_labels = [m for m in gt_overall.columns.values]
    gt_overall.columns = appliance_labels
    pred_overall.columns = appliance_labels
    return gt_overall, pred_overall


np.random.seed(42)

params = {}
co = CombinatorialOptimisation()
fhmm = FHMM()
#predictions = {}
sample_period = 120
print("*"*20)
print('CO')
print("*" *20)
co.train(top_5_train_elec, sample_period=sample_period)
gt_1, predictions_co = predict(co, test_elec, 120, train.metadata['timezone'])
print("*"*20)
print('FHMM')
print("*" *20)
fhmm.train(top_5_train_elec, sample_period=sample_period)
gt_2, predictions_fhmm = predict(fhmm, test_elec, 120, train.metadata['timezone'])

rmse = {}
rmse['CO'] = nilmtk.utils.compute_rmse(gt_1, predictions_co, pretty=True)
Пример #9
0
    common_index_utc = gt_index_utc.intersection(pred_index_utc)
    
    
    common_index_local = common_index_utc.tz_convert(timezone)
    gt_overall = gt_overall.loc[common_index_local]
    pred_overall = pred_overall.loc[common_index_local]
    appliance_labels = [m for m in gt_overall.columns.values]
    gt_overall.columns = appliance_labels
    pred_overall.columns = appliance_labels
    return gt_overall, pred_overall


np.random.seed(42)

co = CombinatorialOptimisation()
fhmm = FHMM()

co.import_model(filename='co.h5')
fhmm.import_model(filename='fhmm.h5')

cot, pred_co = predict(co, test_elec, 120, train.metadata['timezone'])
fhmmt, pred_fhmm = predict(fhmm, test_elec, 120, train.metadata['timezone'])

rmse = {}
rmse["CO"] = nilmtk.utils.compute_rmse(cot, pred_co, pretty=True)
rmse["FHMM"] = nilmtk.utils.compute_rmse(fhmmt, pred_fhmm, pretty=True)



for clf_name in classifiers.keys():
    rmse[clf_name] = nilmtk.utils.compute_rmse(gt, predictions[clf_name], pretty=True)
Пример #10
-3
def run_fhmm(meters):
    # TRAIN FHMM
    logger.info("Training FHMM...")
    fhmm = FHMM()
    fhmm.train(meters)
    logger.info("Disag FHMM...")
    run_nilmtk_disag(fhmm, 'fhmm')