Пример #1
0
def main(args):
    '''
	Pipeline for representational learning for all nodes in a graph.
	'''
    # nx_G = read_graph()
    nx_G = nt.load_network('fed', 'net')
    nx_G = nt.get_gaint_comp(nx_G)
    G = node2vec.Graph(nx_G, args.directed, args.p, args.q)
    G.preprocess_transition_probs()
    walks = G.simulate_walks(args.num_walks, args.walk_length)
    learn_embeddings(walks)
Пример #2
0
def main(args):
    '''
	Pipeline for representational learning for all nodes in a graph.
	'''
    # nx_G = read_graph()
    nx_G = nt.load_network('fed', 'net')
    nx_G = nt.get_gaint_comp(nx_G)
    G = node2vec.Graph(nx_G, args.directed, args.p, args.q)
    G.preprocess_transition_probs()
    walks = G.simulate_walks(args.num_walks, args.walk_length)
    learn_embeddings(walks)
Пример #3
0
def network_stat(dbname, comname, fnetname, bnetname):
    db = dbt.db_connect_no_auth(dbname)
    com = db[comname]
    G = nt.load_network(dbname, fnetname)
    # print G.number_of_nodes()
    BG = nt.load_behavior_network(dbname, bnetname, 'retweet')
    close_cen = nt.closeness_centrality(G)  # normalized=True
    between_cen = nt.betweenness_centrality(G, weight='weight')  # normalized=True, weight=None
    eigen_cen = nt.eigenvector_centrality_numpy(G)  # weight='weight'
    kt_cen = nt.katz_centrality_numpy(G)  # normalized=True, weight='weight'
    diff_cen = nt.diffusion_centrality(BG, G)

    indegree_all = sum(G.in_degree().values())
    outdegree_all = sum(G.out_degree().values())
    close_cen_all = sum(close_cen.values())
    between_cen_all = sum(between_cen.values())
    eigen_cen_all = sum(eigen_cen.values())
    kt_cen_all = sum(kt_cen.values())
    diff_cen_all = sum([diff_cen[item][0] for item in diff_cen])
    goss_all = sum([diff_cen[item][1] for item in diff_cen])

    for v in G.nodes():
        values = com.find_one({'id': v}, ['id', 'net_anal']).get('net_anal', {'mined': True})
        net_sta = {}
        net_sta['node_no'] = G.number_of_nodes()
        net_sta['indegree'] = G.in_degree(v)
        net_sta['indegree_all'] = indegree_all
        net_sta['outdegree'] = G.out_degree(v)
        net_sta['outdegree_all'] = outdegree_all
        net_sta['closeness_centrality'] = close_cen[v]
        net_sta['closeness_centrality_all'] = close_cen_all
        net_sta['betweenness_centrality'] = between_cen[v]
        net_sta['betweenness_centrality_all'] = between_cen_all
        net_sta['eigenvector_centrality'] = eigen_cen[v]
        net_sta['eigenvector_centrality_all'] = eigen_cen_all
        net_sta['katz_centrality'] = kt_cen[v]
        net_sta['katz_centrality_all'] = kt_cen_all
        net_sta['diffusion_centrality'] = diff_cen.get(v, [0.0, 0.0])[0]
        net_sta['diffusion_centrality_all'] = diff_cen_all
        net_sta['gossip'] = diff_cen.get(v, [0.0, 0.0])[1]
        net_sta['gossip_all'] = goss_all
        values['friendship_net'] = net_sta
        com.update_one({'id': v}, {'$set': {'net_anal': values}}, upsert=True)