Пример #1
0
def compute4web(I, a, T, dt, theta=0.5):
    """
    Run a case with the solver, compute error measure,
    and plot the numerical and exact solutions in a PNG
    plot whose data are embedded in an HTML image tag.
    """
    u, t = solver(I, a, T, dt, theta)
    u_e = u_exact(t, I, a)
    e = u_e - u
    E = np.sqrt(dt * np.sum(e**2))

    plt.figure()
    t_e = np.linspace(0, T, 1001)  # fine mesh for u_e
    u_e = u_exact(t_e, I, a)
    plt.plot(t, u, 'r--o')
    plt.plot(t_e, u_e, 'b-')
    plt.legend(['numerical', 'exact'])
    plt.xlabel('t')
    plt.ylabel('u')
    plt.title('theta=%g, dt=%g' % (theta, dt))
    # Save plot to HTML img tag with PNG code as embedded data
    from parampool.utils import save_png_to_str
    html_text = save_png_to_str(plt, plotwidth=400)

    return E, html_text
Пример #2
0
def compute4web(I, a, T, dt, theta=0.5):
    """
    Run a case with the solver, compute error measure,
    and plot the numerical and exact solutions in a PNG
    plot whose data are embedded in an HTML image tag.
    """
    u, t = solver(I, a, T, dt, theta)
    u_e = u_exact(t, I, a)
    e = u_e - u
    E = np.sqrt(dt * np.sum(e ** 2))

    plt.figure()
    t_e = np.linspace(0, T, 1001)  # fine mesh for u_e
    u_e = u_exact(t_e, I, a)
    plt.plot(t, u, "r--o")
    plt.plot(t_e, u_e, "b-")
    plt.legend(["numerical", "exact"])
    plt.xlabel("t")
    plt.ylabel("u")
    plt.title("theta=%g, dt=%g" % (theta, dt))
    # Save plot to HTML img tag with PNG code as embedded data
    from parampool.utils import save_png_to_str

    html_text = save_png_to_str(plt, plotwidth=400)

    return E, html_text
Пример #3
0
def compute4web(I, a, T, dt, theta=0.5):
    """
    Run a case with the solver, compute error measure,
    and plot the numerical and exact solutions in a PNG
    plot whose data are embedded in an HTML image tag.
    """
    u, t = solver(I, a, T, dt, theta)
    u_e = exact_solution(t, I, a)
    e = u_e - u
    E = np.sqrt(dt*np.sum(e**2))

    plt.figure()
    t_e = np.linspace(0, T, 1001)    # fine mesh for u_e
    u_e = exact_solution(t_e, I, a)
    plt.plot(t,   u,   'r--o')       # red dashes w/circles
    plt.plot(t_e, u_e, 'b-')         # blue line for exact sol.
    plt.legend(['numerical', 'exact'])
    plt.xlabel('t')
    plt.ylabel('u')
    plt.title('theta=%g, dt=%g' % (theta, dt))
    # Save plot to HTML img tag with PNG code as embedded data
    from parampool.utils import save_png_to_str
    html_text = save_png_to_str(plt, plotwidth=400)

    return E, html_text
Пример #4
0
def explore(I, a, T, dt, theta=0.5, makeplot=True):
    """
    Run a case with the solver, compute error measure,
    and plot the numerical and exact solutions (if makeplot=True).
    """
    u, t = solver(I, a, T, dt, theta)  # Numerical solution
    u_e = exact_solution(t, I, a)
    e = u_e - u
    E = sqrt(dt * sum(e**2))
    if makeplot:
        plt.figure()  # create new plot
        t_e = linspace(0, T, 1001)  # fine mesh for u_e
        u_e = exact_solution(t_e, I, a)
        plt.plot(t, u, 'r--o')  # red dashes w/circles
        plt.plot(t_e, u_e, 'b-')  # blue line for exact sol.
        plt.legend(['numerical', 'exact'])
        plt.xlabel('t')
        plt.ylabel('u')
        plt.title('theta=%g, dt=%g' % (theta, dt))
        from parampool.utils import save_png_to_str
        html_text = save_png_to_str(plt, plotwidth=400)
    return E, html_text
Пример #5
0
def explore(I, a, T, dt, theta=0.5, makeplot=True):
    """
    Run a case with the solver, compute error measure,
    and plot the numerical and exact solutions (if makeplot=True).
    """
    u, t = solver(I, a, T, dt, theta)    # Numerical solution
    u_e = exact_solution(t, I, a)
    e = u_e - u
    E = sqrt(dt*sum(e**2))
    if makeplot:
        plt.figure()                     # create new plot
        t_e = linspace(0, T, 1001)       # fine mesh for u_e
        u_e = exact_solution(t_e, I, a)
        plt.plot(t,   u,   'r--o')       # red dashes w/circles
        plt.plot(t_e, u_e, 'b-')         # blue line for exact sol.
        plt.legend(['numerical', 'exact'])
        plt.xlabel('t')
        plt.ylabel('u')
        plt.title('theta=%g, dt=%g' % (theta, dt))
        from parampool.utils import save_png_to_str
        html_text = save_png_to_str(plt, plotwidth=400)
    return E, html_text