Пример #1
0
def cum_softmax_direction_prop(state):
    # calculates the cumulated softmax propability for every possible action
    current_policy = policy[state['y'], state['x'], :]  # prop in this agent_pos
    softmax_prop = numpy.exp(current_policy)
    softmax_prop = softmax_prop / numpy.sum(softmax_prop)  # softmax: (e^prop) / (sum(e^prop))
    cum_softmax_prop = numpy.cumsum(softmax_prop)  # cumulating
    return (cum_softmax_prop)


def pick_action(state):
    cum_softmax_prop = cum_softmax_direction_prop(state)
    r = numpy.random.rand()
    for i in range(len(cum_softmax_prop)):
        if cum_softmax_prop[i] > r:
            return i


while True:
    possible_actions = env.get_possible_actions()
    
    direction = pick_action(state)
    	
    last_state = state.copy()
    
    	
    outcome = 0	
    state, outcome, in_end_pos = env.move(possible_actions[direction])
    	
    time.sleep(0.02)
    state = env.getState().copy()
Пример #2
0
        plot(fig, ax, nest.GetStatus(sd_wta, keys='events')[0])

        max_rate = -1
        chosen_action = -1
        for i in range(len(sd_actions)):
            rate = len([e for e in nest.GetStatus([sd_actions[i]], keys='events')[0]['times'] if e > last_action_time]) # calc the "firerate" of each actor population
            if rate > max_rate:
                max_rate = rate # the population with the hightes rate wins
                chosen_action = i

        nest.SetStatus(stimulus, {'rate': 5000.})

        possible_actions = env.get_possible_actions() 

        new_position, outcome, in_end_position = env.move(possible_actions[chosen_action])

        nest.SetStatus(wta_noise, {'rate': 0.})
        for t in range(4):
            nest.Simulate(5)
            time.sleep(0.01)
        
              
        last_action_time += 60
        actions_executed += 1
    else:
        position = env.get_agent_pos().copy()        
        _, in_end_position = env.init_new_trial()
        nest.SetStatus(nest.GetConnections(stimulus, states[position['x']][position['y']]), {'weight': 0.})

rplt.from_device(sd_wta, title="WTA circuit")