Пример #1
0
    out_fname = "patches-%d-dog" % size
    if options.mf:
        out_fname += "-mf"
    if options.norm:
        out_fname += "-norm"
    if options.varnorm:
        out_fname += "-varnorm"

    #
    print "Input file:   %s" % in_fname
    print "Output file:  %s" % out_fname
    print "# of patches: %d" % N_patches
    print "Patch size :  %d x %d" % (size, size)

    # Create output file
    tbl_out = AutoTable(out_fname + ".h5")

    # Size magic
    left = (oversize // 2) - (size // 2)
    right = left + size

    #============================================================
    # Start to do some real work
    batch_size = 1000

    dog = DoG(1., 3., 9)
    for n in xrange(0, N_patches):
        if n % batch_size == 0:
            dlog.progress("Preprocessing...", n / N_patches)

        P = in_oversized[n, :, :]
Пример #2
0
    out_fname = "patches-%d-dog" % size
    if options.mf:
        out_fname += "-mf"
    if options.norm:
        out_fname += "-norm"
    if options.varnorm:
        out_fname += "-varnorm"
    
    #
    print "Input file:   %s" % in_fname
    print "Output file:  %s" % out_fname
    print "# of patches: %d" % N_patches
    print "Patch size :  %d x %d" % (size, size)

    # Create output file
    tbl_out = AutoTable(out_fname+".h5")

    # Size magic
    left = (oversize // 2)-(size //2)
    right = left + size
    
    #============================================================
    # Start to do some real work
    batch_size = 1000
    
    dog = DoG(1., 3., 9)
    for n in xrange(0, N_patches):
        if n % batch_size == 0:
            dlog.progress("Preprocessing...", n/N_patches)

        P = in_oversized[n,:,:]
Пример #3
0
    out_fname = "patches-%d-zca3" % size
    if options.mf:
        out_fname += "-mf"
    if options.norm:
        out_fname += "-norm"
    if options.varnorm:
        out_fname += "-varnorm"

    #
    print "Input file:   %s" % in_fname
    print "Output file:  %s" % out_fname
    print "# of patches: %d" % N_patches
    print "Patch size :  %d x %d" % (size, size)

    # Create output file
    tbl_out = AutoTable(out_fname + ".h5")

    # Internal parameters
    batch_size = 1000
    epsilon = 1e-3
    D = size**2
    dim = D

    #============================================================
    # Start to do some real work
    dlog.progress("Loading patches...")

    P = in_patches[:N_patches, :, :].reshape(N_patches, -1)
    P_mean = P.mean(axis=0)

    # Create covariance matrix
Пример #4
0
    out_fname = "patches-%d-zca3" % size
    if options.mf:
        out_fname += "-mf"
    if options.norm:
        out_fname += "-norm"
    if options.varnorm:
        out_fname += "-varnorm"
    
    #
    print "Input file:   %s" % in_fname
    print "Output file:  %s" % out_fname
    print "# of patches: %d" % N_patches
    print "Patch size :  %d x %d" % (size, size)

    # Create output file
    tbl_out = AutoTable(out_fname+".h5")

    # Internal parameters
    batch_size = 1000
    epsilon = 1e-3
    D = size**2
    dim = D
    
    #============================================================
    # Start to do some real work
    dlog.progress("Loading patches...")

    P = in_patches[:N_patches,:,:].reshape(N_patches, -1)
    P_mean = P.mean(axis=0)

    # Create covariance matrix
Пример #5
0

#=============================================================================
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print "Usage: %s <images.h5> <size>" % sys.argv[0]
        exit(1)

    images_fname = sys.argv[1]
    size = int(sys.argv[2])
    oversize = 2*size
    N_patches = 1000000
    min_var = 0.0001

    out_fname = "patches-%d" % size
    out_tbl = AutoTable(out_fname+".h5")

    images_h5 = tables.openFile(images_fname, "r")
    images = images_h5.root.images

    N_images = images.shape[0]
    #ppi = (N_patches // N_images // 10) + 1
    ppi = 4
    
    for n in xrange(N_patches):
        if n % 1000 == 0:
            dlog.progress("Extracting patch %d" % n, n/N_patches)
        if n % ppi == 0:
            while True:
                img = images[np.random.randint(N_images)]
                img = img / img.max()
Пример #6
0
import pulp.preproc.image as pri

#=============================================================================
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print "Usage: %s <images.h5> <size>" % sys.argv[0]
        exit(1)

    images_fname = sys.argv[1]
    size = int(sys.argv[2])
    oversize = 2 * size
    N_patches = 1000000
    min_var = 0.0001

    out_fname = "patches-%d" % size
    out_tbl = AutoTable(out_fname + ".h5")

    images_h5 = tables.openFile(images_fname, "r")
    images = images_h5.root.images

    N_images = images.shape[0]
    #ppi = (N_patches // N_images // 10) + 1
    ppi = 4

    for n in xrange(N_patches):
        if n % 1000 == 0:
            dlog.progress("Extracting patch %d" % n, n / N_patches)
        if n % ppi == 0:
            while True:
                img = images[np.random.randint(N_images)]
                img = img / img.max()