Пример #1
0
def test_inference_deepGP():
    gp1 = GPRegression(
        X, None,
        RBF(input_dim=3,
            variance=torch.tensor(3.),
            lengthscale=torch.tensor(2.)))
    Z, _ = gp1.model()
    gp2 = VariationalSparseGP(Z, y2D, Matern32(input_dim=3), Z.clone(),
                              Gaussian(torch.tensor(1e-6)))

    class DeepGP(torch.nn.Module):
        def __init__(self, gp1, gp2):
            super(DeepGP, self).__init__()
            self.gp1 = gp1
            self.gp2 = gp2

        def model(self):
            Z, _ = self.gp1.model()
            self.gp2.set_data(Z, y2D)
            self.gp2.model()

        def guide(self):
            self.gp1.guide()
            self.gp2.guide()

    deepgp = DeepGP(gp1, gp2)
    train(deepgp, num_steps=1)
Пример #2
0
    def __init__(self,
                 input_dim,
                 feature_dim=None,
                 mean_fn=None,
                 embed_fn=None):
        super(DMEGP, self).__init__()
        # store params
        self.input_dim = input_dim
        self.feature_dim = feature_dim

        # define mean function and embedding function
        self.mean_fn = mean_fn
        self.embed_fn = embed_fn

        # define kernel function
        if embed_fn == None:
            feature_dim = input_dim
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
        else:
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
            kernel = Warping(kernel, iwarping_fn=self.embed_fn)
            if mean_fn != None:
                self.mean_fn = Warping_mean(self.mean_fn, self.embed_fn)

        # define gaussian process regression model
        self.gp_model = GPRegression(
            X=torch.ones(1, feature_dim),  # dummy
            y=None,
            kernel=kernel,
            mean_function=self.mean_fn)
Пример #3
0
def test_inference_deepGP():
    gp1 = GPRegression(X, None, kernel, name="GPR1")
    Z, _ = gp1.model()
    gp2 = VariationalSparseGP(Z, y2D, Matern32(input_dim=3), Z.clone(),
                              likelihood, name="GPR2")

    def model():
        Z, _ = gp1.model()
        gp2.set_data(Z, y2D)
        gp2.model()

    def guide():
        gp1.guide()
        gp2.guide()

    svi = SVI(model, guide, optim.Adam({}), Trace_ELBO())
    svi.step()
Пример #4
0
    def __init__(self, X_curr, u_curr, X_next, option='GP', inducing_size=100, name='GP_DYNAMICS'):
        """

        :param X_curr: 2 dim tensor array, state at  the current time stamp, H by n
        :param u_curr: 2 dim tensor array, control signal at the current time stamp, H by m
        :param X_next: 2 dim tensor array, state at the next time stamp, H by n
        :param option: use full GP or sparse GP
        :param inducing_size: the number of inducing points if using sparse GP
        :param name:
        """
        super(GP_DYNAMICS).__init__(name)

        if option not in ['SSGP', 'GP']:
            raise ValueError('undefined regression option for gp model!')

        assert(X_curr.dim() == 2 and u_curr.dim() == 2
               and X_next.dim() == 2), "all data inputs can only have 2 dimensions! X_curr: {}, u_curr: {}, X_next: {}".format(X_curr.dim(), u_curr.dim(), X_next.dim())

        assert(X_curr.size()[1] == u_curr.size()[1] and u_curr.size()[1] == X_next.size()[1]), "all data inputs need to have the same length! X_curr: {}, " \
                                                                                               "u_curr: {}, X_next: {}".format(X_curr.size(), u_curr.size(), X_next.size())

        self.X_hat = torch.cat((X_curr, u_curr))
        self.dX = X_next - X_curr

        self.GP_dyn = []

        if option == 'SSGP':
                for i in range(self.dX.size()[1]):
                    kernel = RBF(input_dim=self.X_hat.size()[1], lengthscale=torch.ones(self.X_hat.size()[1]) * 10., variance=torch.tensor(5.0),name="GPs_dim" + str(i) + "_RBF")

                    range_lis = range(0, self.X_hat.size()[0])
                    random.shuffle(range_lis)
                    Xu = self.X_hat[range_lis[0:inducing_size], :]

                    # need to set the name for different model, otherwise pyro will clear the parameter storage
                    ssgpmodel = SparseGPRegression(self.X_hat, self.dX[:, i], kernel, Xu, name="SSGPs_model_dim" + str(i), jitter=1e-5)
                    self.GP_dyn.append(ssgpmodel)

        else:
                for i in range(self.dX.size()[1]):
                    kernel = RBF(input_dim=self.X_hat.size()[1], lengthscale=torch.ones(self.X_hat.size()[1]) * 10., variance=torch.tensor(5.0), name="GPs_dim" + str(i) + "_RBF")
                    gpmodel = GPRegression(self.X_hat, self.dX[:, i], kernel, name="GPs_model_dim" + str(i), jitter=1e-5)
                    self.GP_dyn.append(gpmodel)

        self.option = option
        print("for the dynamics model, input dim {} and output dim {}".format(self.X_hat.size()[1], self.dX.size()[1]))

        self.Kff_inv = torch.zeros((self.dX.size()[1], self.X_hat.size()[0], self.X_hat.size()[0]))
        self.K_var = torch.zeros(self.dX.size()[1], 1)
        self.Beta = torch.zeros((self.dX.size()[1], self.X_hat.size()[0]))
        self.lengthscale = torch.zeros((self.dX.size()[1], self.X_hat.size()[1]))
        self.noise = torch.zeros((self.dX.size()[1], 1))

        if self.option == 'SSGP':
            self.Xu = torch.zeros((self.dX.size()[1], inducing_size))
Пример #5
0
def test_inference_deepGP():
    gp1 = GPRegression(X, None, kernel, name="GPR1")
    Z, _ = gp1.model()
    gp2 = VariationalSparseGP(Z,
                              y2D,
                              Matern32(input_dim=3),
                              Z.clone(),
                              likelihood,
                              name="GPR2")

    def model():
        Z, _ = gp1.model()
        gp2.set_data(Z, y2D)
        gp2.model()

    def guide():
        gp1.guide()
        gp2.guide()

    svi = SVI(model, guide, optim.Adam({}), Trace_ELBO())
    svi.step()
Пример #6
0
    def define_new_GP(self):
        # define kernel function
        if self.embed_fn == None:
            feature_dim = self.input_dim
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
        else:
            feature_dim = self.feature_dim
            embed_fn = copy.deepcopy(self.embed_fn)
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
            kernel = Warping(kernel, iwarping_fn=embed_fn)
            if self.mean_fn != None:
                mean_fn = copy.deepcopy(self.mean_fn)

        # define gaussian process regression model
        gp_model = GPRegression(
            X=torch.ones(1, feature_dim),  # dummy
            y=None,
            kernel=kernel,
            mean_function=mean_fn)
        return gp_model
Пример #7
0
def test_mean_function_GPR():
    X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function()
    gpmodule = GPRegression(X, y, kernel, mean_function=mean_fn)
    train(gpmodule)
    _post_test_mean_function(gpmodule, Xnew, ynew)
Пример #8
0
    def __init__(self, X_s, y_s, X_o, y_o, option='GP', inducing_size=100, name='GP_ADF_RTSS'):
        """
        :param X_s: training inputs for the state transition model N by D tensor
        :param y_s: training outputs for the state transition model N by E tensor
        :param X_o: training inputs for the observation model N by E tensor
        :param y_o: training outputs for the observation model N by F tensor
        :param state_dim: dimension for the state, D
        :param observation_dim: dimension for the output, E
        :param transition_kernel: kernel function for the
        :param observation_kernel:
        :param options:
        """
        super(GP_ADF_RTSS, self).__init__(name)
        if option not in ['SSGP', 'GP']:
            raise ValueError('undefined regression option for gp model!')

        assert(X_s.dim() == 2 and y_s.dim() == 2
               and X_o.dim() == 2 and y_o.dim() == 2), "all data inputs can only have 2 dimensions"

        # # use RBF kernel for state transition model and observation model
        # self.state_transition_kernel = RBF(input_dim=state_dim, lengthscale=torch.ones(state_dim) * 0.1)
        # self.observation_kernel = RBF(input_dim=observation_dim, lengthscale=torch.ones(observation_dim) * 0.1)
        self.X_s = X_s
        self.y_s = y_s
        self.X_o = X_o
        self.y_o = y_o
        # print(X_s.dtype)
        # print(y_s.dtype)
        # print(X_o.dtype)
        # print(y_o.dtype)

        # choose the model type and initialize based on the option
        self.state_transition_model_list  = []
        self.observation_model_list = []


        if option == 'SSGP':
                for i in range(self.y_s.size()[1]):
                    kernel = RBF(input_dim=self.X_s.size()[1], lengthscale=torch.ones(self.X_s.size()[1]) * 10., variance=torch.tensor(5.0),name="GPs_dim" + str(i) + "_RBF")

                    range_lis = range(0, X_s.size()[0])
                    random.shuffle(range_lis)
                    Xu = X_s[range_lis[0:inducing_size], :]

                    # need to set the name for different model, otherwise pyro will clear the parameter storage
                    ssgpmodel = SparseGPRegression(X_s, y_s[:, i], kernel, Xu, name="SSGPs_model_dim" + str(i), jitter=1e-5)
                    self.state_transition_model_list.append(ssgpmodel)

                for i in range(self.y_o.size()[1]):
                    kernel = RBF(input_dim=self.X_o.size()[1], lengthscale=torch.ones(self.X_o.size()[1]) * 10, variance=torch.tensor(5.0), name="GPo_dim" + str(i) + "_RBF")

                    range_lis = range(0, y_o.size()[0])
                    random.shuffle(range_lis)
                    Xu = X_o[range_lis[0:inducing_size], :]

                    ssgpmodel = SparseGPRegression(X_o, y_o[:, i], kernel, Xu, name="SSGPo_model_dim" + str(i), noise=torch.tensor(2.))
                    self.state_transition_model_list.append(ssgpmodel)

        else:
                for i in range(self.y_s.size()[1]):
                    kernel = RBF(input_dim=self.X_s.size()[1], lengthscale=torch.ones(self.X_s.size()[1]) * 10., variance=torch.tensor(5.0), name="GPs_dim" + str(i) + "_RBF")
                    gpmodel = GPRegression(X_s, y_s[:, i], kernel, name="GPs_model_dim" + str(i), jitter=1e-5)
                    self.state_transition_model_list.append(gpmodel)

                for i in range(self.y_o.size()[1]):
                    kernel = RBF(input_dim=self.X_o.size()[1], lengthscale=torch.ones(self.X_o.size()[1]) * 10., variance=torch.tensor(5.0), name="GPo_dim" + str(i) + "_RBF")
                    gpmodel = GPRegression(X_o, y_o[:, i], kernel, name="GPo_model_dim"+ str(i), noise=torch.tensor(2.))
                    self.observation_model_list.append(gpmodel)

        self.option = option
        #
        # if model_file:
        #     self.load_model(model_file)





        self.mu_s_curr      = torch.zeros(y_s.size()[1])
        self.sigma_s_curr   = torch.eye(y_s.size()[1])
        self.mu_o_curr      = torch.zeros(y_o.size()[1])
        self.sigma_o_curr     = torch.eye(y_s.size()[1])

        self.mu_hat_s_curr      = torch.zeros(y_s.size()[1])
        self.sigma_hat_s_curr   = torch.eye(y_s.size()[1])
        self.mu_hat_s_prev      = torch.zeros(y_s.size()[1])
        self.sigma_hat_s_prev   = torch.eye(y_s.size()[1])

        # For backwards smoothing
        self.mu_hat_s_curr_lis     = []
        self.sigma_hat_s_curr_lis  = []
        self.mu_s_curr_lis         = []
        self.sigma_s_curr_lis      = []

        self.sigma_Xpf_Xcd_lis     = []

        self.Kff_s_inv = torch.zeros((y_s.size()[1], X_s.size()[0], X_s.size()[0]))
        self.Kff_o_inv = torch.zeros((y_o.size()[1], X_o.size()[0], X_o.size()[0]))
        self.K_s_var = torch.zeros(y_s.size()[1], 1)
        self.K_o_var = torch.zeros(y_o.size()[1], 1)
        self.Beta_s = torch.zeros((y_s.size()[1], X_s.size()[0]))
        self.Beta_o = torch.zeros((y_o.size()[1], X_o.size()[0]))
        self.lengthscale_s = torch.zeros((y_s.size()[1], X_s.size()[1]))
        self.lengthscale_o = torch.zeros((y_o.size()[1], X_o.size()[1]))
        self.noise_s = torch.zeros((y_s.size()[1], 1))
        self.noise_o = torch.zeros((y_o.size()[1], 1))

        if self.option == 'SSGP':
            self.Xu_s = torch.zeros((y_s.size()[1], inducing_size))
            self.Xu_o = torch.zeros((y_o.size()[1], inducing_size))
            self.noise_s = torch.zeros((y_s.size()[1], inducing_size))
            self.noise_o = torch.zeros((y_o.size()[1], inducing_size))

        print("for state transition model, input dim {} and output dim {}".format(X_s.size()[1], y_s.size()[1]))
        print("for observation model, input dim {} and output dim {}".format(X_o.size()[1], y_o.size()[1]))
Пример #9
0
class DMEGP(nn.Module):
    """
    This class represents core model in DMEGP for regression.
    """
    def __init__(self,
                 input_dim,
                 feature_dim=None,
                 mean_fn=None,
                 embed_fn=None):
        super(DMEGP, self).__init__()
        # store params
        self.input_dim = input_dim
        self.feature_dim = feature_dim

        # define mean function and embedding function
        self.mean_fn = mean_fn
        self.embed_fn = embed_fn

        # define kernel function
        if embed_fn == None:
            feature_dim = input_dim
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
        else:
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
            kernel = Warping(kernel, iwarping_fn=self.embed_fn)
            if mean_fn != None:
                self.mean_fn = Warping_mean(self.mean_fn, self.embed_fn)

        # define gaussian process regression model
        self.gp_model = GPRegression(
            X=torch.ones(1, feature_dim),  # dummy
            y=None,
            kernel=kernel,
            mean_function=self.mean_fn)

    def forward(self, X_sup, Y_sup, X_que, loss_fn, lr, n_adapt):
        """
        Return p(Y_que|X_sup, Y_sup, X_que).
        """
        gp_clone = self.define_new_GP()
        params_clone = copy.deepcopy(self.gp_model.state_dict())
        gp_clone.load_state_dict(params_clone)
        gp_clone.set_data(X_sup, Y_sup)
        optimizer = torch.optim.Adam(get_kernel_params(gp_clone), lr=lr)
        for _ in range(n_adapt):
            optimizer.zero_grad()
            loss = loss_fn(gp_clone.model, gp_clone.guide)
            loss.backward()
            optimizer.step()
        y_loc, y_var = gp_clone(X_que, noiseless=False)
        return y_loc, y_var, loss

    def forward_mean(self, X_que):
        """
        Return \mu(X_que) that is predictions of global mean function.
        """
        mean_preds = self.gp_model.mean_fn(X_que)
        mean_preds = torch.transpose(mean_preds, -1, -2)
        return mean_preds

    def step(self, X_sup, Y_sup, mean_optim, gp_optim, loss_fn, lr, n_adapt):
        """
        Optimize gp 1 step with single time series data.
        Following new optimization step.
        1. adaptation
        2. alternating w and theta
        """
        self.gp_model.set_data(X_sup, Y_sup)

        mean_optim.zero_grad()
        loss = loss_fn(self.gp_model.model, self.gp_model.guide)
        loss.backward()
        mean_optim.step()

        gp_optim.zero_grad()
        loss = loss_fn(self.gp_model.model, self.gp_model.guide)
        loss.backward()
        gp_optim.step()

        return loss

    def define_new_GP(self):
        # define kernel function
        if self.embed_fn == None:
            feature_dim = self.input_dim
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
        else:
            feature_dim = self.feature_dim
            embed_fn = copy.deepcopy(self.embed_fn)
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
            kernel = Warping(kernel, iwarping_fn=embed_fn)
            if self.mean_fn != None:
                mean_fn = copy.deepcopy(self.mean_fn)

        # define gaussian process regression model
        gp_model = GPRegression(
            X=torch.ones(1, feature_dim),  # dummy
            y=None,
            kernel=kernel,
            mean_function=mean_fn)
        return gp_model
Пример #10
0
def test_mean_function_GPR():
    X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function()
    model = GPRegression(X, y, kernel, mean_function=mean_fn)
    model.optimize(optim.Adam({"lr": 0.01}))
    _post_test_mean_function(model, Xnew, ynew)
Пример #11
0
def test_mean_function_GPR():
    X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function()
    model = GPRegression(X, y, kernel, mean_function=mean_fn)
    model.optimize(optim.Adam({"lr": 0.01}))
    _post_test_mean_function(model, Xnew, ynew)