Пример #1
0
def main(verbose=False):
    max_index = -1
    max_block_size = -1
    for i in range(1, 1000):
        stripped_val = robust_divide(robust_divide(i, 2), 5)
        if stripped_val == 1:
            block_size = 0
        else:
            block_size = order_mod_n(10, stripped_val)
        if block_size > max_block_size:
            max_block_size = block_size
            max_index = i

    return max_index
Пример #2
0
def is_squarefree(n):
    if n == 1:
        return True

    quotient = n
    count = 1
    while count == 1:
        prime, _ = first_prime_divisor(quotient)
        quotient, count = robust_divide(quotient, prime, include_count=True)
        if quotient == 1:
            return (count == 1)
    return False
Пример #3
0
def last5(n):
    if n < 8:
        # The remaining part is always divisible by
        # 2**5 for n > 7, these are special cases
        solutions = {0: 1,
                     1: 1,
                     2: 2,
                     3: 6,
                     4: 24,
                     5: 12,
                     6: 72,
                     7: 504}
        return solutions[n]

    if n <= 5 ** 5:
        residues = {}
        for i in range(1, n + 1):
            to_add = robust_divide(i, 5)
            # if to_add is not in residues, sets to 1
            # (default 0 returned by get)
            residues[to_add] = residues.get(to_add, 0) + 1
    else:
        residues = {}
        for residue in range(1, 5 ** 5):
            if residue % 5 != 0:
                residues[residue] = (n - residue) / (5 ** 5) + 1
        max_power = int(floor(log(n) / log(5)))
        for power in range(1, max_power + 1):
            biggest_quotient = n / (5 ** power)
            for residue in range(1, 5 ** 5):
                if residue % 5 != 0:
                    residues[residue] += ((biggest_quotient - residue) /
                                          (5 ** 5) + 1)

    product = 1
    for residue, power in residues.items():
        power_apply = power % (4 * (5 ** 4))  # PHI(5**5)
        product = (product * (residue ** power_apply)) % (5 ** 5)
    fives = num_factors_fact(n, 5) % (4 * (5 ** 4))  # PHI(5**5)
    inverse = inverse_mod_n(2, 5 ** 5)
    product = (product * (inverse ** fives)) % (5 ** 5)

    return (product * unit_a_zero_b(5 ** 5, 2 ** 5)) % 10 ** 5
Пример #4
0
def k_reduced(N):
    k_st = k_star(N)
    k_induced = robust_divide(robust_divide(k_st, 5), 2)
    shared_factors = gcd(k_induced, N)
    return k_induced / shared_factors