Пример #1
0
def load_lisp_core(filename="core.lisp"):
    # Load up and evaluate core.lisp
    f = open(filename)
    reader = Reader(f.read(), filename)
    f.close()
    for expr in reader.read():
        expr.evaluate(core.scope)
Пример #2
0
 def load(self):
     _path = os.path.join(self.root_dir, 'database', 'master_scol')
     with open(_path, 'rb') as _f:
         buf = Reader(_f)
         I, S = buf.read_int, buf.read_str
         def assert_int(i):
             if I() != i:
                 buf.error("Not valid scenario data")
         count = I()     # 剧情章节总计
         for chapter in range(count):
             chapter_id = I()
             chapter = self.scenario[chapter_id] = Chapter()
             assert_int(0)
             chapter.id = chapter_id
             chapter.i = I()
             chapter.title = S()
             chapter.sections = []
             for i in range(I()):
                 section = Section()
                 section.prefix = I()
                 section.title = S()
                 section.battle_num = I()
                 section.talks = []
                 for j in range(I()):
                     section.talks.append(I())
                 chapter.sections.append(section)
             if chapter_id < 400:
                 assert_int(0xc8)
             else:
                 assert_int(0xa1)
         buf.end()
Пример #3
0
def evaluate(expr):
    reader = Reader(expr)
    try:
        exprs = reader.read()
    except Exception, e:
        print e
        return
Пример #4
0
def message_affiche_choix(message, rcenter):
    texte = Reader(message, pos=(rcenter[0] - 290, rcenter[1] + 210), width=cote_fenetre - 20, fontsize=16, height=80,
                   bg=(150, 150, 150), fgcolor=(20, 20, 20))
    # texte.TEXT = message
    continuer_2 = 1
    choix = "n"  # valeur par défaut
    while continuer_2:
        for event in pygame.event.get():
            texte.show()
            if event.type == JOYBUTTONUP:
                if event.button == 0:
                    choix = "o"
                    continuer_2 = 0
                elif event.button == 1:
                    choix = "n"
                    continuer_2 = 0
            elif event.type == KEYDOWN:
                if event.key == K_n:
                    choix = "n"
                    continuer_2 = 0
                elif event.key == K_o:
                    choix = "o"
                    continuer_2 = 0
            elif event.type != KEYDOWN and event.type != MOUSEBUTTONDOWN and event.type != JOYBUTTONUP:
                continue
            elif event.type == QUIT:
                sys.exit()
    return choix
def main(unused_args):
    reader = Reader(split = 0.9)
    x_train, y_train, x_test, y_test = reader.get_data(glob('../../WSJ-2-12/*/*.POS'))
    print('len(reader.word_to_id)',len(reader.word_to_id),
          'len(reader.tag_to_id)', len(reader.tag_to_id))
    print('len(x_train)',len(x_train),
          'len(x_test)', len(x_test))
    best_misclass = 1.0

    with tf.Graph().as_default(), tf.Session() as session:
        initializer = tf.random_uniform_initializer(-FLAGS.init_scale, FLAGS.init_scale)
        with tf.variable_scope("model", reuse=None, initializer=initializer):
            m = RNNTagger(True, len(reader.word_to_id), len(reader.tag_to_id))
        with tf.variable_scope("model", reuse=True, initializer=initializer):
            mtest = RNNTagger(False, len(reader.word_to_id), len(reader.tag_to_id))

        tf.initialize_all_variables().run()

        saver = tf.train.Saver()
        for i in range(FLAGS.max_max_epoch):
            lr_decay = FLAGS.lr_decay ** max(i - FLAGS.max_epoch, 0.0)
            m.assign_lr(session, FLAGS.learning_rate * lr_decay)

            print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
            train_perplexity, _ = run_epoch(session, m, x_train, y_train, m.train_op,
                                         verbose=True)
            _, misclass = run_epoch(session, mtest, x_test, y_test, tf.no_op(), verbose=True)
            if misclass < best_misclass:
                best_misclass = misclass
                fname = 'dropout_double_rnn_tagger_' + str(best_misclass)
                saver.save(session, fname, global_step=i)
                print('saving', fname)
Пример #6
0
    def __init__(self, file_path, tree_name):
        """
        Constructor
        """

        ## Execute the base class constructor
        Reader.__init__(self, file_path, tree_name)
Пример #7
0
 def get_nuclide_from_file(self, file_name):
     try:
         reader = Reader(file_name)
         reader.read_z_a(self.z, self.a)
         nuclide = Nuclide(name=reader.nuclide_data.name, z=int(reader.nuclide_data.z),
                           a=int(reader.nuclide_data.a))
         return nuclide
     except Exception, e:
         raise e
Пример #8
0
 def loadData(self):
     reader = Reader()
     print('loading data')
     self.X_train, self.y_train, self.meta_train=self.prepareData(reader.getData(TRAIN))
     print('train data has been loaded!')
     self.X_valid, self.y_valid, self.meta_valid=self.prepareData(reader.getData(DEV))
     print('valid data has been loaded!')
     self.X_test, self.y_test, self.meta_test=self.prepareData(reader.getData(TEST))
     print('test data has been loaded!')
Пример #9
0
    def __switch(self, xiinArgDict):
        """
        Traffic director.
        """
        from reader import Reader
        reader = Reader()
        # Write output
        if xiinArgDict.filename is not None:
            print('Starting xiin...')
            print('')
            with open(xiinArgDict.filename, 'w') as xiinArgDict.outputFile:
                reader.info(xiinArgDict)

        #Displays output.
        elif xiinArgDict.display:
            print('Starting xiin...')
            print('')
            reader.info(xiinArgDict)

        elif xiinArgDict.grep is not None:
            print('Starting xiin...')
            print('')
            print('Searching files...')
            print('')
            self.grepXiinInfo(xiinArgDict.grep)

        elif xiinArgDict.upload is not None:
    #        xiin.ftp = {'source': '', 'destination': '', 'uname': '', 'password': ''}
            from uploader import Uploader

            xiinArgDict.ftpSource      = None
            xiinArgDict.ftpDestination = None
            xiinArgDict.ftpUname       = None
            xiinArgDict.ftpPwd         = None

            if len(xiinArgDict.upload ) > 0:
                xiinArgDict.ftpSource      = xiinArgDict.upload[0]
                xiinArgDict.ftpDestination = xiinArgDict.upload[1]

            if len(xiinArgDict.upload ) > 2:
                # Legacy support
                if xiinArgDict.ftpUname is 'anon' or xiinArgDict.ftpUname is 'anonymous':
                    pass
                else:
                    xiinArgDict.ftpUname       = xiinArgDict.upload[2]
                    xiinArgDict.ftpPwd         = xiinArgDict.upload[3]

            print('Starting xiin uploader...')
            print('')
            print('Uploading debugging information...')
            print('')

            uploader = Uploader()
            uploader.upload(xiinArgDict.ftpSource, xiinArgDict.ftpDestination, xiinArgDict.ftpUname, xiinArgDict.ftpPwd)
        else:
            print('ERROR: Unknown')
            exit(7)
Пример #10
0
def main(size, path):
    checker = Checker(size)
    reader = Reader(checker, size)
    data = reader.read("data\\" + path)
    solver = Solver(checker, size)

    try:
        return solver.solve(data)
    except Exception as e:
        return str(e)
Пример #11
0
def main():
  SUCCESS = 0
  #arguments declaration
  parser = argparse.ArgumentParser()
  parser.add_argument('--omitheader','-m', help='Do not show the header about pizza and kittens',  action='store_true', default=False)
  parser.add_argument('--hublist', help='Shows all available hubs',  action='store_true', default=False)
  parser.add_argument('--similar','-s', help='Displays similar hubs as a histogram', nargs=1, metavar=("hub_name"))
  parser.add_argument('--alsoread','-a', help='Displays what else people read from this hub as a histogram', nargs=1, metavar=("hub_name"))
  parser.add_argument('--max', help='Print several hubs that maximize the score function e.g. --similar or --alsoread', nargs=1, metavar=("number_of_hubs"), type=int) 
  parser.add_argument('--min', help='Print several hubs that minimize the score function e.g. --similar or --alsoread', nargs=1, metavar=("number_of_hubs"), type=int)
  parser.add_argument('--company', help='If a name is ambiguous, like yandex: it is a hub and a company, then enforce company interpretation', action="store_true", default=False)

  args = vars(parser.parse_args())

  #check flags and delegate functions to src/reader.py and src/hubs_wrapper.py
  if len(sys.argv)==1:
    print_header_hubs()
    parser.print_help()
    return SUCCESS

  if args['omitheader']:
    pass
  else:
    print_header_hubs()

  if args['hublist']:
    Reader.print_hubs()
    return SUCCESS

  isCompany = False
  if args['company']:
    isCompany = True

  flag = None
  flagopts = None
  if args['max']:
    flag = "max"
    flagopts = args['max'][0]

  if args['min']:
    flag = "min"
    flagopts = args['min'][0]

  if args['similar']:
    hub_name = args['similar'][0]
    display_preferences(hub_name, isCompany, "similarity", flag, flagopts)
    return SUCCESS

  if args['alsoread']:
    hub_name = args['alsoread'][0]
    display_preferences(hub_name, isCompany, "inclusion", flag, flagopts)
    return SUCCESS
Пример #12
0
class Wayterm(object):
    def __init__(self):
        self.app_key = '1746312660'
        self.app_secret = 'a113b12f49266b12125f6df1f9808045'
        self.callback_url = 'http://wayterm.nerocrux.org/done'
        self.template = Template()
        self.url = Url()
        self.reader = Reader()
        self.token = {}

        if self._read_access_token():
            self.client = Client(self.app_key, self.app_secret, self.callback_url, self.token)
        else:
            self.client = Client(self.app_key, self.app_secret, self.callback_url)
            self.auth_url = self.url.shorten(self.client.authorize_url)
            print '[1] Open this url in your browser: ' + self.auth_url
            self.auth_code = raw_input('[2] Enter authorization code: ')
            self.client.set_code(self.auth_code)
            token = {
                'access_token':self.client.token['access_token'],
                'expires_at':self.client.token['expires_at'],
                'uid':self.client.token['uid'],
            }
            self._write_access_token(token)
            print 'Authorization done. Enjoy!'


    def _read_access_token(self):
        try:
            self.token = yaml.load(open(os.path.join(os.getenv('HOME'), '.wayterm.yaml')).read())
        except:
            return False
        return True


    def _write_access_token(self, token):
        stream = file(os.path.join(os.getenv('HOME'), '.wayterm.yaml'), 'w')
        yaml.dump(token, stream)


    def _init_print(self):
        self.reader.printfile('logo')


    def call(self, command):
        if command[0].lower() == 'exit':
            exit()
        if command[0].lower() == 'help':
            self.reader.printfile('help')
            return
        api = Api(self.client)
        api.call(command)
Пример #13
0
def main_test():
    reader = Reader()
    retainer = Retainer()
    params = reader.read()
    api_targets = []
    for name, param in params.items():
        parser = Parser(name, param)
        api_targets.append(parser)
    for target in api_targets:
        creater = Creater(target)
        api_parameters = creater.create()
        retainer.insert(target.name, api_parameters)
    retainer.close()
Пример #14
0
 def __init__(self):
     reader = Reader()
     print('loading data')
     self.X_train=reader.getData(TRAIN)
     print('train data has been loaded!')
     self.X_valid=reader.getData(DEV)
     print('valid data has been loaded!')
     self.X_test=reader.getData(TEST)
     print('test data has been loaded!')
     self.c_title=[]
     self.c_body=[]
     self.bigram=Phrases.load('./data/bigram.dat')
     self.trigram=Phrases.load('./data/trigram.dat')
Пример #15
0
 def load(self):
     _path = path.join(self.root_dir, 'database', 'master_card')
     with open(_path, 'rb') as _f:
         buf = Reader(_f)
         count = buf.read_int()  # 卡牌数量
         offsets = [0] * count
         self.cards = cards = [None] * count
         for i in range(count):
             cards[i] = MACard()
             offsets[i] = buf.read_int()
         for i, card in enumerate(cards):
             buf.seek(offsets[i])
             card.load(buf)
Пример #16
0
def evaluate_file(filename):
    try:
        f = open(filename)
    except IOError:
        print "Cannot open file %s" % repr(filename)
        return
    reader = Reader(f.read())
    f.close()
    try:
        exprs = reader.read()
    except Exception, e:
        print e
        return
Пример #17
0
class Generator:
    def __init__(self, filename):
        self.reader = Reader(filename)

    def execute(self):
        self.reader.execute()
        datas=self.reader.getData()

        tps=[InterfaceTemplate(datas), ImplementTemplate(datas), \
             TestTemplate(datas)]

        for tp in tps:
            print tp.execute()
Пример #18
0
class Notifier(wx.App):
    """main notifier app"""

    def __init__(self):

        wx.App.__init__(self, redirect=0)

        # menu handlers
        menu = [
            ("Show again", self.again),
            ("Settings", self.settings),
            ("Exit", self.exit),
        ]

        # main objects
        self.icon = Icon(menu)
        self.popup = Popup()
        self.reader = Reader(feeds=["http://digg.com/rss/index.xml"])

        # main timer routine
        timer = wx.Timer(self, -1)
        self.Bind(wx.EVT_TIMER, self.main, timer)
        timer.Start(500)
        self.MainLoop()

    def main(self, event):

        if not self.popup.opened():
            # show popup for next new item
            for item in self.reader.items():
                self.popup.show("%(feed)s\n%(title)s%(title)s%(title)s%(title)s%(title)s%(title)s%(title)s%(title)s" % item)
                status = "on"
                break
            else:
                status = "off"
            # set icon status
            self.icon.setStatus(status)

    def again(self):
        print "again"

    def settings(self):
        print "settings"

    def exit(self):

        # close objects and end
        self.reader.close()
        self.icon.close()
        self.Exit()
Пример #19
0
def main(opts):
    if not opts.demo:
        from reader import Reader

    global q
    delay = 0.001
    lights = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0}

    print opts
    if not opts.demo:
        reader = Reader(lights)

    sounder = Sounder()
    player = Player(sounder)
    songs = os.listdir("./songs/")
    songs = filter(lambda x: x.endswith(".js"), songs)

    numpy.random.shuffle(songs)
    print ("Loaded songs:")
    print (songs)

    for song in cycle(songs):
        # time.sleep(.5)
        q = player.song(song)

        while True:
            debug_str = ""
            time.sleep(delay)

            if not opts.demo:
                reader.fetch()

            if not q["play"].empty():
                player.chord(q["play"].get_nowait())

            for ch in lights:
                debug_str += "{}:{} ".format(ch, lights[ch])
                if lights[ch] < 650 or opts.demo:
                    sounder.start(get_str(ch))
                else:
                    sounder.stop(get_str(ch))

            # print(debug_str)
            time.sleep(delay)

            if q["sig"] == "stopped":
                print "caught sig... stopping song"
                sounder.mute()
                break
Пример #20
0
    def test_extractLinks(self):
        print ">>> test_extractLinks"
        app    = LinkCrawler()
        reader = Reader(app)
        configIsLoaded = app.loadConfigurationSite("unittest")

        if configIsLoaded is False:
            self.fail("load configuration failed")
        else:
            response     = reader.getResponse('http://www.scandio.de')
            responseData = response[3]
            links = reader.extractLinks(responseData, 'http://www.scandio.de')

        print "<<< test_extractLinks [links: %s]\n" % links
        self.failUnless(links)
Пример #21
0
def message_short(message, rcenter):
    # texte.TEXT = message
    texte = Reader(message, pos=(rcenter[0] - 290, rcenter[1] + 210), width=cote_fenetre - 20, fontsize=16, height=80,
                   bg=(150, 150, 150), fgcolor=(20, 20, 20))
    continuer_2 = 1
    tps_deb = time.time() + 2
    while continuer_2:
        if time.time() >= tps_deb:
            continuer_2 = 0
        for event in pygame.event.get():
            texte.show()
            if event.type == QUIT:
                sys.exit()
            elif event.type == KEYDOWN and event.key == K_ESCAPE:
                sys.exit()
Пример #22
0
def run_parser(filepath, request):

    print >>sys.stderr, 'Parsing started with {}'.format(filepath)
    base_file_path = os.getcwd()
    try:
        padding = 300
        file_type = check_file_type(filepath)
        if file_type == 'file error':
            error = 'This file is not the correct input type, please try an LRG or GB file'
            document_list = created_documents.objects.order_by('-created_on')
            return render(request, 'web_interface/app_homepage.html', {'form': UploadForm(),
                                                                       'document_list': document_list,
                                                                       'error_message': error})
        dictionary = {}
        if file_type == 'gbk':
            gbk_reader = GbkParser(filepath, padding, True)
            dictionary = gbk_reader.run()
            parser_details = gbk_reader.get_version
        elif file_type == 'lrg':
            lrg_reader = LrgParser(filepath, padding, True)
            dictionary  = lrg_reader.run()
            parser_details = lrg_reader.get_version
        parser_details = '{0} {1} {2}'.format(file_type.upper(), 'Parser:', parser_details)
        os.chdir('web_interface')
        os.chdir('output')
        for transcript in dictionary['transcripts']:
            input_reader = Reader()
            writer = LatexWriter()
            reader_details = 'Reader: ' + input_reader.get_version
            writer_details = 'Writer: ' + writer.get_version
            xml_gui_details = 'Control: {}'.format(get_version)
            list_of_versions = [parser_details, reader_details, writer_details, xml_gui_details]
            input_list, nm = input_reader.run(dictionary, transcript, True, list_of_versions, True, file_type, 'web user')
            transcript_accession = dictionary['transcripts'][transcript]['NM_number']
            file_name = transcript_accession
            latex_file, pdf_file = writer.run(input_list, file_name)
            call(["pdflatex", "-interaction=batchmode", latex_file])
            save_as_model = created_documents(transcript=transcript_accession,
                                              location=pdf_file,
                                              gene=dictionary['genename'],
                                              created_on=datetime.now())
            save_as_model.save()
            delete_all_but_most_recent()
    except:
        os.chdir(base_file_path)
    os.chdir(base_file_path)
    clean_up(os.path.join('web_interface', 'output'))
    clean_up(os.path.join('web_interface', 'input'))
Пример #23
0
class Generator:
    def __init__(self, configFile, templetes):
        self.reader = Reader(configFile)
        self.templetes = templetes
        
    def _templateList(self):
        datas = self.reader.getData()
        
        return map(lambda tp : self._template_import__private(tp)(datas), self.templetes)
   
    def _template_import__private(self, model, filename=None):
        if not filename:
            filename = model.lower()
        name = "%sTemplate" % (model)
        
        mod = __import__("lib.template.model.%s" % filename, fromlist=[name])
        return  getattr(mod, name)
    
    def _write(self, files):
        path = "dist"
         
        if not os.path.exists(path):
            os.makedirs(path)
            
            
        for name, body in files.iteritems():
            f = open("%s/%s.java" % (path, name), "w")
            f.write(body)
            f.close()

        print "Generated file to %s" % os.path.abspath(path)

    def execute(self):
        self.reader.execute()

        tps = self._templateList()
        
        files = {}

        for tp in tps:
            body = tp.execute()
            
            m = re.search("public (class|interface) (\S+)", body)
            name = m.group(2)
            
            files[name] = body
            
        self._write(files)
Пример #24
0
class ReadLayer(object):

    def __init__(self, rng, h_shape, image_shape, N, name='Default_readlayer'):
        print('Building layer: ' + name)

        self.lin_transform = HiddenLayer(
            rng,
            n_in=h_shape[0] * h_shape[1],
            n_out=4,
            activation=None,
            irange=0.001,
            name='readlayer: linear transformation')

        self.reader = Reader(
            rng,
            image_shape=image_shape,
            N=N,
            name='readlayer: reader')

        self.params = self.lin_transform.params

    def one_step(self, h, image):
        linear = self.lin_transform.one_step(h)

        read, g_x, g_y, delta, sigma_sq = self.reader.one_step(linear, image)
        return read, g_x, g_y, delta, sigma_sq
Пример #25
0
    def __init__(self, config):

        ## define class attributes
        self.logger = logging.getLogger("Viewer")

        self.data   = None           # current data to show
        self.header = None           # first line of file to use as header
        self.title  = None           # filename

        self.useHeader  = config['header']         # if using first line as header
        self.useRegex   = config['regex']          # if searching with regular expression
        self.searchText = config['search']         # initial search string (may be empty)
        self.separator  = str(config['separator'])   # column separator (e.g. comma, tab, space)

        # handle highlighting of alternate lines
        self.highlight  = config['highlightLines']
        #self.highlight_color = wx.Colour(242, 242, 242)  # light gray for light themes
        self.highlight_color = wx.Colour(32, 32, 32)      # dark gray for dark themes

        self.text = None           # search box object
        self.regex_text = None     # regex checkbox object
        self.header_box = None     # header checkbox object

        self.reader = Reader(config)

        chunk = self.reader.next()
        self.ReadData(chunk)

        self.header = self.data[0]
        self.title = config['filename'].split('/')[-1]

        self.InitViewer()
Пример #26
0
def feeds():

    reader = Reader()

    for feed in config["feeds"]:
        reader.add(feed)

    reader.run()

    stories = reader.stories[0:100]

    return make_response(
        json.dumps({"count": len(stories), "stories": stories, "template": file_get_contents("templates/stories.hbs")}),
        200,
        {"Content-type": "application/json"},
    )
Пример #27
0
 def __init__(self, path):
     self.path = path
     self.queue = Queue.PriorityQueue()
     self.watcher = Watcher(path, self.queue)
     self.walker = Walker(path, self.queue, Settings.is_rescan_forced())
     self.reader = Reader(self.queue)
     self.validator = Validator(self.queue)
Пример #28
0
	def __init__(self, log=None):
		"""Initialize a reusable instance of the class."""
		super(Parser, self).__init__()
		self._reader = Reader()
		
		self.log = log
		if log:
			self._init_logging()		
Пример #29
0
def compute(hubname, isCompany, fun_name):
    hub_readers = Reader.check_and_download(hubname, isCompany)
    hubs_data_dir = "data/hubs/"
    tocut = len(hubs_data_dir)
    hubs = glob.glob(hubs_data_dir + "*")
    similarity_dict = dict()
    for hub_file in hubs:
        readers = Reader.read_list_of_users(hub_file)
        hub = hub_file[tocut:]
        # skip itself
        if hub == hubname:
            continue
        if fun_name == "similarity":
            similarity_dict[hub] = jaccard_index(hub_readers, readers)
        if fun_name == "inclusion":
            similarity_dict[hub] = inclusion(hub_readers, readers)
    return similarity_dict
Пример #30
0
    def test_completeRelativePath(self):
        print ">>> test_completeRelativePath\n"
        app        = LinkCrawler()
        reader     = Reader(app)

        array = [['/en/de/index.html', '/aa/bb/index.htm']
                , ['/en/de/index.html', 'cc/dd/index.htm']
                , ['/en/de/index.html', '../cc/dd/index.htm']
                , ['/en/', 'search_iframe_en.htm']
                , ['/en/', '/search_iframe_en.htm']
                , ['/en/', '../search_iframe_en.htm']]

        for i in range(0, len(array)):
            relPath    = reader.completeRelativePath(array[i][0], array[i][1])
            print "test_completeRelativePath [path: %s, parent: %s, relPath: %s]\n" % (array[i][0],array[i][1],relPath)
            self.failUnless(relPath)

        print "<<< test_completeRelativePath \n"
Пример #31
0
def test_from_file(filepath):
    reader = Reader()
    model = DynamicLSTM(None, is_training=False, reuse=False)
    model_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                        scope="model")
    model_saver = tf.train.Saver(model_variables)

    with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                          log_device_placement=False)) as sess:
        ckpt_path = tf.train.latest_checkpoint(config.model_dir)
        if ckpt_path:
            model_saver.restore(sess,
                                tf.train.latest_checkpoint(config.model_dir))
            print("Read model parameters from %s" %
                  tf.train.latest_checkpoint(config.model_dir))
        else:
            print("model doesn't exists")
        model_path = os.path.join(config.model_dir, config.model_name)
        model_saver.save(sess, model_path, global_step=0)
        data_gen = reader.get_custom_line_from_file(filepath)
        for inputs, inputs_len in data_gen:
            feed_dict = {model.x: inputs, model.x_len: inputs_len}
            prob = sess.run([model.output_prob], feed_dict=feed_dict)
Пример #32
0
def decode_user_command(record):
    rdr = Reader(BytesIO(record.value))
    k_rdr = Reader(BytesIO(record.key))
    cmd = {}
    cmd['type'] = rdr.read_int8()
    cmd['str_type'] = decode_user_cmd_type(cmd['type'])

    if cmd['type'] == 5 or cmd['type'] == 7:
        cmd['user'] = k_rdr.read_string()
        cmd['cred'] = {}
        cmd['cred']['version'] = rdr.read_int8()
        cmd['cred']['salt'] = rdr.read_iobuf().hex()
        cmd['cred']['server_key'] = rdr.read_iobuf().hex()
        cmd['cred']['stored_key'] = rdr.read_iobuf().hex()
        # obfuscate secrets
        cmd['cred']['salt'] = obfuscate_secret(cmd['cred']['salt'])
        cmd['cred']['server_key'] = obfuscate_secret(cmd['cred']['server_key'])
        cmd['cred']['stored_key'] = obfuscate_secret(cmd['cred']['stored_key'])

    elif cmd['type'] == 6:
        cmd['user'] = k_rdr.read_string()

    return cmd
Пример #33
0
    def model(self):
        X_reader = Reader(self.X_train_file,
                          name='X',
                          image_size=self.image_size,
                          batch_size=self.batch_size)
        Y_reader = Reader(self.Y_train_file,
                          name='Y',
                          image_size=self.image_size,
                          batch_size=self.batch_size)

        x = X_reader.feed()
        y = Y_reader.feed()

        cycle_loss = self.cycle_consistency_loss(self.G, self.F, x, y)

        # X -> Y
        fake_y = self.G(x)
        G_gan_loss = self.generator_loss(self.D_Y,
                                         fake_y,
                                         use_lsgan=self.use_lsgan)
        G_loss = G_gan_loss + cycle_loss
        D_Y_loss = self.discriminator_loss(self.D_Y,
                                           y,
                                           self.fake_y,
                                           use_lsgan=self.use_lsgan)

        # Y -> X
        fake_x = self.F(y)
        F_gan_loss = self.generator_loss(self.D_X,
                                         fake_x,
                                         use_lsgan=self.use_lsgan)
        F_loss = F_gan_loss + cycle_loss
        D_X_loss = self.discriminator_loss(self.D_X,
                                           x,
                                           self.fake_x,
                                           use_lsgan=self.use_lsgan)

        # Summary
        tf.summary.histogram('D_Y/true', self.D_Y(y))
        tf.summary.histogram('D_Y/fake', self.D_Y(self.G(x)))
        tf.summary.histogram('D_X/true', self.D_X(x))
        tf.summary.histogram('D_X/fake', self.D_X(self.F(y)))

        tf.summary.scalar('loss/G', G_gan_loss)
        tf.summary.scalar('loss/D_Y', D_Y_loss)
        tf.summary.scalar('loss/F', F_gan_loss)
        tf.summary.scalar('loss/D_X', D_X_loss)
        tf.summary.scalar('loss/cycle', cycle_loss)

        tf.summary.image('X/generated', utils.batch_convert2int(self.G(x)))
        tf.summary.image('X/reconstruction',
                         utils.batch_convert2int(self.F(self.G(x))))
        tf.summary.image('Y/generated', utils.batch_convert2int(self.F(y)))
        tf.summary.image('Y/reconstruction',
                         utils.batch_convert2int(self.G(self.F(y))))

        return G_loss, D_Y_loss, F_loss, D_X_loss, fake_y, fake_x
Пример #34
0
class Explorer:
    def __init__(self, url):
        self._reader = Reader(url)
        if (self._reader is None):
            return None
        if (self._reader._soup is None):
            self._reader = None
            return None

    def read_pritty(self):
        print(self._reader._soup.get_text())

    def write_to_file(self, file_name):
        if (self._reader is None):
            return None
        text = self._reader._soup.get_text()
        write_text_to_file(file_name, text)

    def explore_links_from_articles(self, file_name):
        if (self._reader is None):
            return None

        list = self._reader.links_to_articles_reader()
        f = open(file_name, "a")
        for element in list:
            f.write(str(element))
            f.write('\n')
        f.close()

    def explore_authors(self, file_name):
        if (self._reader is None):
            return None

        list = self._reader.read_comments_authors()
        if (len(list) > 10):
            for i in range(10):
                write_text_to_file(str(i) + file_name, list[i])
Пример #35
0
def __most_expensive_node_car(car_number, solution, data: Reader):
    """
        take node with highest travel and delivery cost in a car
        Returns: index of node in solution
    """
    vehicleDict = data.getVehiclesDict()
    vertexDict = data.getVertexDict()
    callsDict = data.getCallsDict()
    nodeDict = data.getNodes()
    home, _, _ = vehicleDict[car_number]
    cur_node = home
    car_index = car_number
    started_calls = []
    record_cost = 0
    record_index = 0
    start, stop = __get_car_index(car_number, solution, data.num_cars)
    for index, call in enumerate(solution[start:stop + 1]):
        assert call is not 0
        (origin, dest, _, failCost, _, _, _, _) = callsDict[call]
        _, origin_cost, _, dest_cost = nodeDict[(car_index, call)]
        if call not in started_calls:
            started_calls.append(call)
            cur_cost = origin_cost
            next_node = origin
        else:
            started_calls.remove(call)
            cur_cost = dest_cost
            next_node = dest
        _, travel_cost = vertexDict[(car_index, cur_node, next_node)]
        cur_cost = cur_cost + travel_cost
        cur_node = next_node
        if cur_cost > record_cost:
            record_cost = cur_cost
            record_index = index
    assert solution[record_index + start] == solution[start:stop +
                                                      1][record_index]
    return record_index + start
Пример #36
0
def evaluate(source, env):
    if isinstance(source, str):
        return env.find(source)[source]
    elif not isinstance(source, list):
        return source
    elif source[0] == 'define':
        key, value = source[1], evaluate(source[2], env)
        env[key] = value
        return "'{}' => {}".format(key, value)
    elif source[0] == 'quote':
        return source[1]
    elif source[0] == 'cons':
        new = evaluate(source[1], env)
        lst = [evaluate(expr, env) for expr in source[2:]][0]
        #  lst = evaluate(source[2:], env)
        lst.insert(0, new)
        return lst
    elif source[0] == 'car':
        return evaluate(evaluate(source[1], env)[0], env)
    elif source[0] == 'cdr':
        return evaluate(source[1], env)[1:]
    elif source[0] == 'cond':
        for statement in source[1:]:
            cond, expr = statement[0], statement[1]
            if cond == "else" or evaluate(cond, env):
                return evaluate(expr, env)
        raise SyntaxError( "Invalid syntax of 'cond'")
    elif source[0] == 'lambda':
        def gen_body_of_lamda(exps, vargs, args):
            inner_env = Env(vargs, args, env)
            for exp in exps:
                result = evaluate(exp, inner_env)
            return result

        vargs, expr = source[1], source[2:]
        return lambda args: gen_body_of_lamda(expr, vargs, args)
    elif source[0] == 'load':
        match = re.search(re.compile(r'(?<=\").*(?=\")'), source[1])
        file_path = match.group(0)
        with open(file_path) as f:
            module_contents = Reader.parse(f.read())
            for target in module_contents:
                print(evaluate(target, env))
    elif source[0] == 'eq?':
        return evaluate(source[1], env) == evaluate(source[2], env)
    else:
        operator = env.find(source[0])[source[0]]
        args = [evaluate(expr, env) for expr in source[1:]]
        return operator(args) if callable(operator) else evaluate(operator, env)
Пример #37
0
    def __init__(self, n, file):

        self.path_width = 4 # Width of the paths drawn on screen (px)
        self.n = n # Number of circles
        self.upr = 100 # Updates per rotation, for upr=50, it takes 50 updates to reach a full rotation
        self.t = 0 # 'time' passed since start.
        self.width, self.height = 1920, 1080 # Width and height of screen shown on screen/video
        self.fullscreen = True

        self.video_mode = False # Video mode creates a video of the drawing
        self.fps = 40 # Frames per second in video
        self.video_length = 200 # Number of frames in video
        self.finished = False
        self.framecount = 0
        if self.video_mode:
            fourcc = VideoWriter_fourcc(*'MP42')
            self.video = VideoWriter('C:\\Koding\\Scripts\\Python\\Fourier Series\\Videoer\\' +file+ '_' +str(self.n)+ '.avi', fourcc, float(self.fps), (self.width, self.height))

        self.root = Tk() # Main window
        if self.fullscreen:
            self.root.attributes("-fullscreen", True) # set fullscreen
        else:
            self.root.geometry(str(self.width) + "x" + str(self.height)) # Setting width and height of video

        self.root.bind("<Escape>", self.close) # Pressing escape closes the window
        self.canvas = Canvas(self.root, width=self.width, height=self.height) # Canvas to draw on
        self.canvas.pack()
        self.canvas.create_text(100,100,text="n="+str(n),font="Times 50 italic bold")

        self.reader = Reader(self.n, self.upr, self.width, self.height, self.path_width)
        self.paths = self.reader.read_svg(file + ".svg") # Read SVG file and calculate vectors
        for path in self.paths: # Draw startposition of all vectors on the canvas
            for vector in path.vectors:
                vector.create(self.canvas)
        self.root.after(1, self.frame) # Run first frame after 1ms
        self.root.mainloop() # Start window
Пример #38
0
def create_all_csvs(r: Reader, a: Analyzer):
    diffs = defaultdict(list)
    diffs_sq = defaultdict(list)

    for filename in get_all_log_files():
        r.load_log_file(filename)

        out_folder = "csvs/{}".format(filename[:-4])
        if not os.path.exists(out_folder):
            os.mkdir(out_folder)

        all_csvs = a.get_all_csv_list()
        for key, csv_list in all_csvs.items():

            vals = csv_list[1].split(",")[-2:]
            avg_diff = int(float(vals[0]))
            avg_diff_sq = int(float(vals[1]))

            diffs[key].append(avg_diff)
            diffs_sq[key].append(avg_diff_sq)

            with open("{}/{}.csv".format(out_folder, key.lower()),
                      "w") as file:
                for line in csv_list:
                    file.write(line)
    avgs = {}
    avgs_sq = {}

    for key, l in diffs.items():
        avgs[key] = int(sum(l) / len(l))

    for key, l in diffs_sq.items():
        avgs_sq[key] = int(sum(l) / len(l))

    print("AVG:", avgs)
    print("AVG SQS:", avgs_sq)
Пример #39
0
 def test_7_get_timestamps_for_epoch(self):
     os.chdir(rootwd)
     for key in self.file_nostim:
         reader_io_nostim = Reader(self.file_nostim[key])
     os.chdir(pwd)
     orderedepochs_soma = reader_io_nostim.drawout_orderedepochs(
         'soma')  #drawout orderedepoch
     orderedepochs_axon = reader_io_nostim.drawout_orderedepochs('axon')
     epoch_id = 0
     times_soma = reader_io_nostim.get_timestamps_for_epoch(
         epoch_id, orderedepochs_soma)
     times_axon = reader_io_nostim.get_timestamps_for_epoch(
         epoch_id, orderedepochs_axon)
     #
     self.assertEqual([len(times_soma), times_soma],
                      [len(times_axon), times_axon])
     reader_io_nostim.closefile()
Пример #40
0
    def _init_test_graph(self):
        # Initialize TFRecoder reader
        testReader = Reader(tfrecordsFile=self.dataPath[0],
                            decodeImgShape=self.decodeImgShape,
                            imgShape=self.inputShape,
                            batchSize=1,
                            minQueueExamples=1,
                            name='test')

        # Batch for test data
        imgTest, _, self.img_name_test, self.user_id_test = testReader.batch(multi_test=self.multi_test,
                                                                             use_advanced=self.advanced_multi_test)

        # Convert the shape [?, self.num_try, H, W, 1] to [self.num_try, H, W, 1] for multi-test
        if self.multi_test:
            if self.advanced_multi_test:
                shape = [6*2*self.num_try, *self.outputShape]
            else:
                shape = [2*self.num_try, *self.outputShape]
        else:
            shape = [1, *self.outputShape]
        self.imgTests = tf.reshape(imgTest, shape=shape)

        self.predTest = self.forward_network(inputImg=self.normalize(self.inputImgPh), reuse=True)
Пример #41
0
 def test_1_init(self):
     # loads nwbfile, extracts modelname, modelscale & instantiate model
     os.chdir(rootwd)
     for key in self.file_nostim:
         reader_io_nostim = Reader(self.file_nostim[key])
     for key in self.file_stim:
         reader_io_stim = Reader(self.file_stim[key])
     os.chdir(pwd)
     #
     reader_io_nostim.chosenmodel = self.chosenmodel
     reader_io_stim.chosenmodel = self.chosenmodel
     #print self.chosenmodel.name
     # this tests extract_modelname_modelscale & load_model
     compare1 = [
         reader_io_nostim.modelname,  # output of 
         reader_io_nostim.modelscale
     ]  # extract_modelname_modelscale()
     compare2 = [
         reader_io_stim.chosenmodel.modelname,  # output of
         reader_io_stim.chosenmodel.modelscale
     ]  # load_model()
     self.assertEqual(compare1, compare2)
     reader_io_nostim.closefile()
     reader_io_stim.closefile()
def get_model(num_hid_layers, cells_per_layer, dropout_rate):
	length = Reader.getInputShape()
	model = Sequential()
	model.add(Dense(cells_per_layer, input_shape=(length,), activation='relu'))
	model.add(Dropout(dropout_rate))
	for i in range(num_hid_layers):
		model.add(Dense(cells_per_layer, activation='relu'))
		model.add(Dropout(dropout_rate))
	model.add(Dense(5, activation='softmax'))#softmax se multiclass, sigmoid se 2class
	model_name = models_directory + 'MLP.hidlay' + str(num_hid_layers) + '.cells' + str(cells_per_layer) + '.drop' + str(dropout_rate)
	plot_model(model, to_file = model_name + '.2class' +  '.png', show_shapes=True)
	fp_model = open(model_name + '.2class' + '.json', 'w+')
	fp_model.write(model.to_json())
	fp_model.close()
	return model
Пример #43
0
    def model(self):
        X_reader = Reader(X_TRAIN_FILE, name='X')
        Y_reader = Reader(Y_TRAIN_FILE, name='Y')

        x = X_reader.feed()
        y = Y_reader.feed()

        cycle_loss = self.cycle_consistency_loss(self.G, self.F, x, y)

        # X -> Y
        G_gan_loss = self.generator_loss(self.G,
                                         self.D_Y,
                                         x,
                                         use_lsgan=self.use_lsgan)
        G_loss = G_gan_loss + cycle_loss
        D_Y_loss = self.discriminator_loss(self.G,
                                           self.D_Y,
                                           x,
                                           y,
                                           use_lsgan=self.use_lsgan)

        # Y -> X
        F_gan_loss = self.generator_loss(self.F,
                                         self.D_X,
                                         y,
                                         use_lsgan=self.use_lsgan)
        F_loss = F_gan_loss + cycle_loss
        D_X_loss = self.discriminator_loss(self.F,
                                           self.D_X,
                                           y,
                                           x,
                                           use_lsgan=self.use_lsgan)

        # summary
        tf.summary.histogram('D_Y/true', self.D_Y(y))
        tf.summary.histogram('D_Y/fake', self.D_Y(self.G(x)))
        tf.summary.histogram('D_X/true', self.D_X(x))
        tf.summary.histogram('D_X/fake', self.D_X(self.F(y)))

        tf.summary.scalar('loss/G', G_gan_loss)
        tf.summary.scalar('loss/D_Y', D_Y_loss)
        tf.summary.scalar('loss/F', F_gan_loss)
        tf.summary.scalar('loss/D_X', D_X_loss)
        tf.summary.scalar('loss/cycle', cycle_loss)

        tf.summary.image('X/generated', utils.batch_convert2int(self.G(x)))
        tf.summary.image('X/reconstruction',
                         utils.batch_convert2int(self.F(self.G(x))))
        tf.summary.image('Y/generated', utils.batch_convert2int(self.F(y)))
        tf.summary.image('Y/reconstruction',
                         utils.batch_convert2int(self.G(self.F(y))))

        self.summary = tf.summary.merge_all()
        self.saver = tf.train.Saver()

        return G_loss, D_Y_loss, F_loss, D_X_loss
Пример #44
0
def infer(img_path, model_path, image_shape, label_dict_path):
    # 获取标签字典
    char_dict = load_dict(label_dict_path)
    # 获取反转的标签字典
    reversed_char_dict = load_reverse_dict(label_dict_path)
    # 获取字典大小
    dict_size = len(char_dict)
    # 获取reader
    my_reader = Reader(char_dict=char_dict, image_shape=image_shape)
    # 初始化PaddlePaddle
    paddle.init(use_gpu=True, trainer_count=1)
    # 获取网络模型
    model = Model(dict_size, image_shape, is_infer=True)
    # 加载训练好的参数
    parameters = paddle.parameters.Parameters.from_tar(gzip.open(model_path))
    # 获取预测器
    inferer = paddle.inference.Inference(output_layer=model.log_probs, parameters=parameters)
    # 裁剪车牌
    # cutPlateNumber = CutPlateNumber()
    # cutPlateNumber.strat_crop(img_path, True)
    # 加载裁剪后的车牌
    test_batch = [[my_reader.load_image(img_path)]]
    # 开始预测
    return start_infer(inferer, test_batch, reversed_char_dict)
Пример #45
0
class StanzaShuffler():
    def __init__(self, split_path):
        self.path = split_path
        self.reader = Reader()
        self.data = [[d[0].split(' </br> '), d[1]] for d in self.reader.read_from_split(split_path)]

    def shuffle_data(self):
        result = []
        for stanza in self.data:
            tmp = stanza[0]
            shuffle(tmp)
            lines = ''
            for line in tmp:
                lines = lines + ' </br> ' + line
            lines = lines[7:]
            result.append([lines, stanza[1]])            
        return result + self.reader.read_from_split(self.path)

    def save_data(self, save_path):
        data = self.shuffle_data()
        shuffle(data)
        with open(save_path, 'w', encoding='utf-8', newline='') as out_file:
            tsv_writer = csv.writer(out_file, delimiter='\t')
            tsv_writer.writerows(data)
Пример #46
0
    def testExampleA(self):
        self.maxDiff = None

        Reader(self.mock_file)
        expect_output = 'outdir/file_0'
        with open(self.mock_expected) as f:
            mock_expected = f.read()

        mock_expected = mock_expected.split('\n')

        with open(expect_output) as f:
            actual_output = f.read()
        actual_output = actual_output.split('\n')

        self.assertItemsEqual(mock_expected, actual_output)
Пример #47
0
  def runKNN_DTW(self):
    #Carrega o reader com os valores do conjunto de treino e a linha a ser testada
    reader = Reader(self.nomeCjTreino, self.vetordeteste)
    matrizDTW = reader.RunDTW()  
    
    #Ordena a matriz de ditancias entre o teste e o conjunto de treino em orgem crescente
    matrizDTW.sort(key=lambda tup: tup[1])
    ocorrencias = []

    resultado = []

    #Itera no vetor de valores de k (assim o programa não precisa recalcular pra cada valor de k, ja faz tudo de uma vez)
    for i in range(self.k.__len__()):
      resultadotemp = []
      #Pega os K vizinhos mais proximos e vê qual ocorre mais vezes
      for x in range(self.k[i]):
        ocorrencias.append(matrizDTW[x][0])
      c = Counter(ocorrencias).most_common()
      resultadotemp.append(self.k[i])
      resultadotemp.append(c[0][0])
      resultado.append(resultadotemp)

    # Retorna a ocorrencia mais comum
    return resultado
Пример #48
0
    def model(self):
        if self.X_train_file != None and self.Y_train_file != None:
            X_reader = Reader(self.X_train_file,
                              name='X',
                              image_size=self.image_size,
                              batch_size=self.batch_size)
            Y_reader = Reader(self.Y_train_file,
                              name='Y',
                              image_size=self.image_size,
                              batch_size=self.batch_size)

            x = X_reader.feed()
            y = Y_reader.feed()

        else:
            x = tf.placeholder(dtype=tf.float32, shape=[self.batch_size, 3])
            y = tf.placeholder(dtype=tf.float32, shape=[self.batch_size, 3])
        """ Loss Function """

        cycle_loss = self.cycle_consistency_loss(self.G, self.F, x, y)
        print(cycle_loss)

        # X -> Y
        fake_y = self.G(x)  # __call__(input)
        print(fake_y)
        G_gan_loss = self.generator_loss(self.D_Y, fake_y, use_lsgan=True)
        print(G_gan_loss)
        G_loss = G_gan_loss + cycle_loss
        D_Y_loss = self.discriminator_loss(self.D_Y,
                                           y,
                                           self.fake_y,
                                           use_lsgan=True)

        # Y -> X
        fake_x = self.F(y)
        print(fake_x)
        F_gan_loss = self.generator_loss(self.D_X, fake_x, use_lsgan=True)
        F_loss = F_gan_loss + cycle_loss
        D_X_loss = self.discriminator_loss(self.D_X,
                                           x,
                                           self.fake_x,
                                           use_lsgan=True)

        # summary
        tf.summary.histogram('D_Y/true', self.D_Y(y))
        tf.summary.histogram('D_Y/fake', self.D_Y(self.G(x)))
        tf.summary.histogram('D_X/true', self.D_X(x))
        tf.summary.histogram('D_X/fake', self.D_X(self.F(y)))

        tf.summary.scalar('loss/G', G_gan_loss)
        tf.summary.scalar('loss/D_Y', D_Y_loss)
        tf.summary.scalar('loss/F', F_gan_loss)
        tf.summary.scalar('loss/D_X', D_X_loss)
        tf.summary.scalar('loss/cycle', cycle_loss)

        return G_loss, D_Y_loss, F_loss, D_X_loss, fake_y, fake_x
Пример #49
0
def get_reader(username=None, password=None, use_cookie_file=False):
    reader = Reader(Opener())
    if 'cookies' in session:
        print "Loading cookies"
        reader.opener.load_cookies(session['cookies'])
    elif use_cookie_file:
        print "Loading cookies from file"
        with open(tmp_dir + "cookies.txt", "r") as text_file:
            cookies = text_file.read()
            print cookies
            reader.opener.load_cookies(cookies)
    elif username is None:
        print "Cannot login, no username provided"
        return (None, "No username provided")
    else:
        print "Logging in as ", username
        reader.init()

        if not os.path.exists(tmp_dir):
            os.mkdir(tmp_dir)

        with open(tmp_dir + "cookies.txt", "wb") as text_file:
            text_file.write(reader.opener.get_cookies())

        result = reader.login(username, password)

        if "The userID or password could not be validated" in result:
            print "Bad User ID or password"
            return (None, "Bad User ID or password")

        if "Concurrent Login Error" in result:
            print "User already logged in"
            return (None, "User already logged in")

        print "Logged in"
    return (reader, "")
Пример #50
0
 def get_group(self, group_key_name):
     group = Group.get_by_key_name(group_key_name)
     if group is None:
         self.response.write('No group by that name exists.')
     else:
         # Check for new posts
         for group_feed in group.group_feeds:
             reader = Reader.create(group_feed.feed)
             reader.refresh()
         template_values = {
             'group_key_name': group_key_name,
             'group': group,
             'user': users.get_current_user()
         }
         template = JINJA_ENVIRONMENT.get_template('templates/group.html')
         self.response.write(template.render(template_values))
Пример #51
0
    def __init__(self, p=0.01175, n=1):             # Init with optimal prune value and no grams as default

        self.number_of_reviews = None               # Total number of analyzed reviews
        self.total_pos_words = 0                    # Total positive words or n-grams
        self.total_neg_words = 0                    # Total negative words or n-grams
        self.directory = ''                         # Directory (alle or subset)

        self.pos_freq = defaultdict(int)            # Frequency of words or n-grams
        self.neg_freq = defaultdict(int)            # Frequency of words or n-grams

        self.most_common_pos = []                   # 25 most common words or n-grams
        self.most_common_neg = []                   # 25 most common words or n-grams

        self.pos_popularity = {}                    # Popularity values
        self.neg_popularity = {}                    # Popularity values
        self.pos_highest_pop = []
        self.neg_highest_pop = []

        self.pos_information_value = {}             # Informational values
        self.neg_information_value = {}             # Informational values
        self.pos_highest_inform_val = []            # 25 highest informational value
        self.neg_highest_inform_val = []            # 25 highest informational value

        self.pos_all_words_raw = []                 # Made in find_frequency (all docs as lists)
        self.neg_all_words_raw = []                 # Made in find_frequency (all docs as lists)

        self.pos_doc_count = defaultdict(int)       # Made in prune (in how many docs does the word appear).
        self.neg_doc_count = defaultdict(int)       # Made in prune (in how many docs does the word appear).

        self.set_directory()                        # Prompt
        r = Reader()

        if n > 1:
            self.pos_all_n_grams_raw = []
            self.neg_all_n_grams_raw = []

            self.make_n_grams_and_find_frequency(r, n)
            self.prune(p, self.pos_all_n_grams_raw, self.neg_all_n_grams_raw)
        else:
            self.find_frequency(r)
            self.prune(p, self.pos_all_words_raw, self.neg_all_words_raw)

        self.find_most_common()
        self.find_popularity()
        self.find_highest_pop_value()
        self.find_information_value()
        self.find_highest_informational_value()
Пример #52
0
def main():
    """Shows basic usage of the Sheets API.
    Prints values from a sample spreadsheet.
    """
    env = read_env()
    print('start main')
    lang_list = get_range(env['lang'])
    sheet = sheets_api(credential(env['credential_file_path']))

    result = sheet.values().get(spreadsheetId=SAMPLE_SPREADSHEET_ID,
                                range=SAMPLE_RANGE_NAME).execute()
    print(result)

    reader = Reader(result)
    # print(reader.get_column_info())
    # print(reader.get_lang_by_column('ko'))
    '''
Пример #53
0
def test():
    input_tensor = Input((40, 40, 1))
    predicted = LeNetModel(input_tensor)
    model = Model(inputs=input_tensor, outputs=predicted)
    model.load_weights(
        '/home/ld/remote_project/CV_HW1/feature/LeNet/checkpoint-10-2.15.hdf5')
    reader = Reader('/home/ld/dataset/affNIST/training_and_validation_batches',
                    '/home/ld/dataset/affNIST/test.mat')
    model.compile(optimizer='Adam',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    score = model.evaluate(np.expand_dims(reader.test_images, axis=3),
                           keras.utils.to_categorical(reader.test_labels, 10),
                           verbose=0)
    print('Total Test Accuracy is ', score[1])
    predict_res = model.predict(np.expand_dims(reader.test_images, axis=3))
    calculate_acc_error(np.argmax(predict_res, axis=1), reader.test_labels)
Пример #54
0
        def onkeypress(event):
            print totitle(self.n), event.key
            self.data[self.n] = event.key
            if (self.default_filename):
                self.save(self.default_filename)

            self.n = self.g.next()
            print "Loading: " + totitle(self.n)
            movie = Reader(self.n, adjuststipple=True)
            print "Showing"
            clf()
            imshow(movie[self.iframe], interpolation='nearest')
            self.drawrefs()
            grid(True)
            axis('image')
            title(totitle(self.n))
            draw()
Пример #55
0
    def load_reader(self, chat):
        cid = str(chat.id)
        reader = self.get_reader(cid)
        if reader is not None:
            return reader

        reader = self.get_reader_file(cid)
        if not reader:
            reader = Reader.FromChat(chat, self.min_period, self.max_period,
                                     self.logger)

        old_reader = self.memory.add(reader)
        if old_reader is not None:
            old_reader.commit_memory()
            self.store(old_reader)

        return reader
Пример #56
0
def main():
    input_csv_file_name = sys.argv[1]
    output_csv_file_name = sys.argv[2]

    # input values are in the form of [feature_1, feature_2, label]
    input_values = Reader.csv(input_csv_file_name)

    # Track previous weights and allow to compare against latest weight to check convergence
    previous_weights = [0, 0, 0]
    weights = None

    Reporter.write_output(file_name=output_csv_file_name,
                          content="",
                          should_overwrite_file=True)

    training_inputs = [[x[0], x[1]] for x in input_values]
    results = [x[2] for x in input_values]

    iterations = 0

    while (previous_weights != weights):
        # Past the initial condition, we want to track the previous_weight
        if (weights != None):
            # update previous weight so we can remember for comparison
            previous_weights = weights
            # import ipdb; ipdb.set_trace()

        # weights will be list in the form of [b or w_0, w_1, w_2]
        weights = PerceptronLearning.run(training_inputs=training_inputs,
                                         results=results,
                                         initial_weights=previous_weights,
                                         iterations=1)

        # write lines to output file
        Reporter.write_output(
            file_name=output_csv_file_name,
            content=','.join(map(str, [weights[1], weights[2], weights[0]])) +
            "\n",
        )

        # create png images of the figures
        Visualizer.draw_chart(input_values=input_values,
                              weights=weights,
                              file_name="figures/figure_" + str(iterations))

        iterations += 1
Пример #57
0
  def __init__(self, models_dir, fold_name, writer=None, hyper=None):
    self._graph = tf.Graph()
    with self._graph.as_default():
      reader = Reader(fold_name)
      self.fold_size = reader.fold_size
      with tf.device('/gpu:1'):
        self._input = reader.inputs(Tester.BATCH_SIZE, is_train=False)
        self._network = Network(self._input['images'], is_train=False, hyper=hyper)
        self._probs = self._network.probs()
        self._cross_entropy_losses = self._network.cross_entropy_losses(self._input['labels'])
        self._all_summaries = tf.merge_all_summaries()

    self.models_dir = models_dir
    print('Tester model folder: %s' %self.models_dir)
    assert os.path.exists(self.models_dir)

    self.writer = writer
Пример #58
0
def train():
    batch_size = 32
    train_total = 1920000
    input_tensor = Input((224, 224, 1), dtype=tf.float32)
    predicted = VGG16Model(input_tensor)
    model = Model(inputs=input_tensor, outputs=predicted)
    model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])
    checkpoint = ModelCheckpoint(filepath='/home/ld/remote_project/CV_HW1/feature/VGG16/checkpoint-{epoch:02d}.hdf5')
    reader = Reader(
        '/home/ld/dataset/affNIST/training_and_validation_batches',
        '/home/ld/dataset/affNIST/test.mat',
        batch_size=batch_size,
        resize=[224, 224]
    )
    callbacks = [CustomModelCheckpoint(model, '/home/ld/remote_project/CV_HW1/feature/VGG16/checkpoint-{epoch:02d}.hdf5')]

    model.fit_generator(reader.train_generator, epochs=5, steps_per_epoch=int(train_total / batch_size + 1),
                        callbacks=callbacks)
Пример #59
0
 def test_3_pull_epochindices_chosenregion(self):
     os.chdir(rootwd)
     for key in self.file_stim:
         reader_io_stim = Reader(self.file_stim[key])
     os.chdir(pwd)
     epoch_indices_soma = reader_io_stim.pull_epochindices_chosenregion(
         'soma')
     epoch_indices_axon = reader_io_stim.pull_epochindices_chosenregion(
         'axon')
     #print epoch_indices_soma
     #print epoch_indices_axon
     self.assertNotEqual(epoch_indices_soma, epoch_indices_axon)
     reader_io_stim.closefile()
Пример #60
0
def assign_unused_call(init_solution, data: Reader, feasible):
    """
    assign most expensive dummy call to random vehicle
    """
    # find most expensive
    solution = init_solution.copy()
    call_dict = data.getCallsDict()
    record_cost = 0
    record_call = None
    unused_calls = __get_dummy_calls(solution)
    for call in unused_calls:
        origin, dest, s, fail_cost, lp, up, ld, ud = call_dict[call]
        if fail_cost > record_cost:
            record_call = call
            record_cost = fail_cost
    call = record_call
    if call is None:
        return solution
    # remove call
    assert call != 0
    assert call in solution
    solution.remove(call)
    solution.remove(call)
    car_number = math.ceil(random.random() * data.num_cars)
    start, stop = __get_car_index(car_number, solution, data.num_cars)
    if stop - start < brute_force_limit:
        new_sol = __insert_call_brute_force(solution, call, car_number, data,
                                            feasible)
        if new_sol is not None:
            return new_sol
        return init_solution
    else:
        # add randomly to new car
        if start == stop + 1:
            # empty car
            solution.insert(start, call)
            solution.insert(start, call)
        else:
            t1 = random.randint(start, stop)
            t2 = random.randint(start, stop)
            solution.insert(t1, call)
            solution.insert(t2, call)
        assert len(solution) == len(init_solution)
        return solution