Пример #1
0
 def generate_test_data(sensors):
     events = generate_random_events(sensors,
                                     num_test_instances,
                                     at_least_one_per_setting=True)
     data = events_to_dataset(events,
                              name="synthetic",
                              excluded_sensors=[],
                              excluded_actions=[])
     return dataset_to_sklearn(data)
Пример #2
0
def generate_synthetic_dataset(num_sensors, nominal_values_per_sensor, num_instances):
    """
    Generate a random dataset in the format required by scikit-learn, see dataset.dataset_to_sklearn for more details.
    @param num_sensors: Number of different sensors in the dataset.
    @param nominal_values_per_sensor: Number of possible settings for each sensor.
    @param num_instances: Number of data instances in the dataset.
    @return: A random dataset in scikit-learn format.
    """

    #generate the desired number of sensors, all have the same number of possible settings
    sensor_settings = set("v%d" % id for id in range(nominal_values_per_sensor))
    sensor_name = lambda id: "s%d" % id
    sensors = {sensor_name(id): sensor_settings for id in range(num_sensors)}

    events = generate_random_events(sensors, num_instances)
    dataset = events_to_dataset(events, name="synthetic", excluded_sensors=[], excluded_actions=[])

    return dataset_to_sklearn(dataset)
Пример #3
0
def generate_synthetic_dataset(num_sensors, nominal_values_per_sensor,
                               num_instances):
    """
    Generate a random dataset in the format required by scikit-learn, see dataset.dataset_to_sklearn for more details.
    @param num_sensors: Number of different sensors in the dataset.
    @param nominal_values_per_sensor: Number of possible settings for each sensor.
    @param num_instances: Number of data instances in the dataset.
    @return: A random dataset in scikit-learn format.
    """

    #generate the desired number of sensors, all have the same number of possible settings
    sensor_settings = set("v%d" % id
                          for id in range(nominal_values_per_sensor))
    sensor_name = lambda id: "s%d" % id
    sensors = {sensor_name(id): sensor_settings for id in range(num_sensors)}

    events = generate_random_events(sensors, num_instances)
    dataset = events_to_dataset(events,
                                name="synthetic",
                                excluded_sensors=[],
                                excluded_actions=[])

    return dataset_to_sklearn(dataset)
Пример #4
0
 def generate_test_data(sensors):
     events = generate_random_events(sensors, num_test_instances, at_least_one_per_setting=True)
     data = events_to_dataset(events, name="synthetic", excluded_sensors=[], excluded_actions=[])
     return dataset_to_sklearn(data)