import sample_images import sparse_autoencoder from test_numerical_gradient import diff_grad, check_grad patch_size = (8, 8) visible_size = patch_size[0] * patch_size[1] # hidden_size = 25 hidden_size = 3 weight_decay, sparsity_param, beta = 0.0001, 0.01, 3 # weight_decay, sparsity_param, beta = 0, 0.01, 0 # num_samples = 10 num_samples = 100 images = sample_images.load_matlab_images("../data/IMAGES.mat") patches = sample_images.sample(images, num_samples, patch_size) base_sae_cost = partial( sparse_autoencoder.cost, visible_size=visible_size, hidden_size=hidden_size, sparsity_param=sparsity_param, data=patches, ) def test_sae_cost(): threshold = 1e-9 * (num_samples / 50.0) theta = sparse_autoencoder.initialize_params(hidden_size, visible_size)
#!/usr/bin/env python import functools import numpy as np import pca import sample_images import display_network if __name__=='__main__': num_samples = 10000 num_samples = 10000 m = sample_images.load_matlab_images('IMAGES_RAW.mat') patches = sample_images.sample(m, num_samples, size=(12,12), norm=None) display_network.display_network('raw-patches.png', patches) # ensure that patches have zero mean mean = np.mean(patches, axis=0) patches -= mean assert np.allclose(np.mean(patches, axis=0), np.zeros(patches.shape[1])) U, s, x_rot = pca.pca(patches) covar = pca.covariance(x_rot) display_network.array_to_file('covariance.png', covar) # percentage of variance # cumulative sum pov = np.array(functools.reduce(
if __name__ == '__main__': # Network Architecture patch_size = (8,8) visible_size = patch_size[0] * patch_size[1] hidden_size = 25 #hidden_size = 3 # Training params weight_decay, sparsity_param, beta = 0.0001, 0.01, 3 #weight_decay, sparsity_param, beta = 0, 0.01, 0 max_iter = 400 # Maximum number of iterations of L-BFGS to run # Get the samples num_samples = 10000 #num_samples = 10 images = sample_images.load_matlab_images('IMAGES.mat') patches = sample_images.sample(images, num_samples, patch_size) # set up L-BFGS args theta = sparse_autoencoder.initialize_params(hidden_size, visible_size) sae_cost = partial(sparse_autoencoder.cost, visible_size=visible_size, hidden_size=hidden_size, weight_decay = weight_decay, beta=beta, sparsity_param=sparsity_param, data=patches) # Train! trained, cost, d = scipy.optimize.lbfgsb.fmin_l_bfgs_b(sae_cost, theta, maxfun=max_iter,
#!/usr/bin/env python import functools import numpy as np import pca import sample_images import display_network if __name__ == '__main__': num_samples = 10000 num_samples = 10000 m = sample_images.load_matlab_images('IMAGES_RAW.mat') patches = sample_images.sample(m, num_samples, size=(12, 12), norm=None) display_network.display_network('raw-patches.png', patches) # ensure that patches have zero mean mean = np.mean(patches, axis=0) patches -= mean assert np.allclose(np.mean(patches, axis=0), np.zeros(patches.shape[1])) U, s, x_rot = pca.pca(patches) covar = pca.covariance(x_rot) display_network.array_to_file('covariance.png', covar) # percentage of variance # cumulative sum pov = np.array(
if __name__ == '__main__': # Network Architecture patch_size = (8, 8) visible_size = patch_size[0] * patch_size[1] hidden_size = 25 #hidden_size = 3 # Training params weight_decay, sparsity_param, beta = 0.0001, 0.01, 3 #weight_decay, sparsity_param, beta = 0, 0.01, 0 max_iter = 400 # Maximum number of iterations of L-BFGS to run # Get the samples num_samples = 10000 #num_samples = 10 images = sample_images.load_matlab_images('IMAGES.mat') patches = sample_images.sample(images, num_samples, patch_size) # set up L-BFGS args theta = sparse_autoencoder.initialize_params(hidden_size, visible_size) sae_cost = partial(sparse_autoencoder.cost, visible_size=visible_size, hidden_size=hidden_size, weight_decay=weight_decay, beta=beta, sparsity_param=sparsity_param, data=patches) # Train! trained, cost, d = scipy.optimize.lbfgsb.fmin_l_bfgs_b(sae_cost, theta,