Пример #1
0
 def test_dbm_export(self):
     # Create a dbm classifier to export.
     bayes = DBDictClassifier(TEMP_DBM_NAME)
     # Stuff some messages in it so it's not empty.
     bayes.learn(tokenize(spam1), True)
     bayes.learn(tokenize(good1), False)
     # Save & Close.
     bayes.store()
     bayes.close()
     # Export.
     sb_dbexpimp.runExport(TEMP_DBM_NAME, "dbm", TEMP_CSV_NAME)
     # Reopen the original.
     bayes = open_storage(TEMP_DBM_NAME, "dbm")
     # Verify that the CSV holds all the original data (and, by using
     # the CSV module to open it, that it is valid CSV data).
     fp = open(TEMP_CSV_NAME, "rb")
     reader = sb_dbexpimp.csv.reader(fp)
     (nham, nspam) = reader.next()
     self.assertEqual(int(nham), bayes.nham)
     self.assertEqual(int(nspam), bayes.nspam)
     for (word, hamcount, spamcount) in reader:
         word = sb_dbexpimp.uunquote(word)
         self.assert_(word in bayes._wordinfokeys())
         wi = bayes._wordinfoget(word)
         self.assertEqual(int(hamcount), wi.hamcount)
         self.assertEqual(int(spamcount), wi.spamcount)
Пример #2
0
 def test_dbm_export(self):
     # Create a dbm classifier to export.
     bayes = DBDictClassifier(TEMP_DBM_NAME)
     # Stuff some messages in it so it's not empty.
     bayes.learn(tokenize(spam1), True)
     bayes.learn(tokenize(good1), False)
     # Save & Close.
     bayes.store()
     bayes.close()
     # Export.
     sb_dbexpimp.runExport(TEMP_DBM_NAME, "dbm", TEMP_CSV_NAME)
     # Reopen the original.
     bayes = open_storage(TEMP_DBM_NAME, "dbm")
     # Verify that the CSV holds all the original data (and, by using
     # the CSV module to open it, that it is valid CSV data).
     fp = open(TEMP_CSV_NAME, "rb")
     reader = sb_dbexpimp.csv.reader(fp)
     (nham, nspam) = reader.next()
     self.assertEqual(int(nham), bayes.nham)
     self.assertEqual(int(nspam), bayes.nspam)
     for (word, hamcount, spamcount) in reader:
         word = sb_dbexpimp.uunquote(word)
         self.assert_(word in bayes._wordinfokeys())
         wi = bayes._wordinfoget(word)
         self.assertEqual(int(hamcount), wi.hamcount)
         self.assertEqual(int(spamcount), wi.spamcount)
Пример #3
0
 def test_pickle_export(self):
     bayes = PickledClassifier(TEMP_PICKLE_NAME)
     bayes.learn(tokenize(spam1), True)
     bayes.learn(tokenize(good1), False)
     bayes.store()
     sb_dbexpimp.runExport(TEMP_PICKLE_NAME, "pickle", TEMP_CSV_NAME)
     fp = open(TEMP_CSV_NAME, "rb")
     reader = sb_dbexpimp.csv.reader(fp)
     (nham, nspam) = reader.next()
     self.assertEqual(int(nham), bayes.nham)
     self.assertEqual(int(nspam), bayes.nspam)
     for (word, hamcount, spamcount) in reader:
         word = sb_dbexpimp.uunquote(word)
         self.assert_(word in bayes._wordinfokeys())
         wi = bayes._wordinfoget(word)
         self.assertEqual(int(hamcount), wi.hamcount)
         self.assertEqual(int(spamcount), wi.spamcount)