def simulate_demo_traj(sim_env, new_xyz, seg_info, full_trajs, ignore_infeasibility=True, animate=False, interactive=False): sim_util.reset_arms_to_side(sim_env) old_xyz = np.squeeze(seg_info["cloud_xyz"]) old_xyz = clouds.downsample(old_xyz, DS_SIZE) new_xyz = clouds.downsample(new_xyz, DS_SIZE) handles = [] if animate: handles.append(sim_env.env.plot3(old_xyz,5, (1,0,0))) handles.append(sim_env.env.plot3(new_xyz,5, (0,0,1))) miniseg_starts, miniseg_ends, _ = sim_util.split_trajectory_by_gripper(seg_info, thresh = GRIPPER_ANGLE_THRESHOLD) success = True feasible = True misgrasp = False print colorize.colorize("mini segments:", "red"), miniseg_starts, miniseg_ends for (i_miniseg, (i_start, i_end)) in enumerate(zip(miniseg_starts, miniseg_ends)): if i_miniseg >= len(full_trajs): break full_traj = full_trajs[i_miniseg] for lr in 'lr': gripper_open = sim_util.binarize_gripper(seg_info["%s_gripper_joint"%lr][i_start], GRIPPER_ANGLE_THRESHOLD) prev_gripper_open = sim_util.binarize_gripper(seg_info["%s_gripper_joint"%lr][i_start-1], GRIPPER_ANGLE_THRESHOLD) if i_start != 0 else False if not sim_util.set_gripper_maybesim(sim_env, lr, gripper_open, prev_gripper_open): redprint("Grab %s failed" % lr) misgrasp = True success = False if not success: break if len(full_traj[0]) > 0: if not eval_util.traj_is_safe(sim_env, full_traj, COLLISION_DIST_THRESHOLD): redprint("Trajectory not feasible") feasible = False if feasible or ignore_infeasibility: success &= sim_util.sim_full_traj_maybesim(sim_env, full_traj, animate=animate, interactive=interactive) else: success = False if not success: break sim_env.sim.settle(animate=animate) sim_env.sim.release_rope('l') sim_env.sim.release_rope('r') sim_util.reset_arms_to_side(sim_env) if animate: sim_env.viewer.Step() return success, feasible, misgrasp, full_trajs
def simulate_demo_traj(sim_env, new_xyz, seg_info, full_trajs, ignore_infeasibility=True, animate=False, interactive=False): sim_util.reset_arms_to_side(sim_env) old_xyz = np.squeeze(seg_info["cloud_xyz"]) old_xyz = clouds.downsample(old_xyz, DS_SIZE) new_xyz = clouds.downsample(new_xyz, DS_SIZE) handles = [] if animate: handles.append(sim_env.env.plot3(old_xyz, 5, (1, 0, 0))) handles.append(sim_env.env.plot3(new_xyz, 5, (0, 0, 1))) miniseg_starts, miniseg_ends, _ = sim_util.split_trajectory_by_gripper( seg_info, thresh=GRIPPER_ANGLE_THRESHOLD) success = True feasible = True misgrasp = False print colorize.colorize("mini segments:", "red"), miniseg_starts, miniseg_ends for (i_miniseg, (i_start, i_end)) in enumerate(zip(miniseg_starts, miniseg_ends)): if i_miniseg >= len(full_trajs): break full_traj = full_trajs[i_miniseg] for lr in 'lr': gripper_open = sim_util.binarize_gripper( seg_info["%s_gripper_joint" % lr][i_start], GRIPPER_ANGLE_THRESHOLD) prev_gripper_open = sim_util.binarize_gripper( seg_info["%s_gripper_joint" % lr][i_start - 1], GRIPPER_ANGLE_THRESHOLD) if i_start != 0 else False if not sim_util.set_gripper_maybesim(sim_env, lr, gripper_open, prev_gripper_open): redprint("Grab %s failed" % lr) misgrasp = True success = False if not success: break if len(full_traj[0]) > 0: if not eval_util.traj_is_safe(sim_env, full_traj, COLLISION_DIST_THRESHOLD): redprint("Trajectory not feasible") feasible = False if feasible or ignore_infeasibility: success &= sim_util.sim_full_traj_maybesim( sim_env, full_traj, animate=animate, interactive=interactive) else: success = False if not success: break sim_env.sim.settle(animate=animate) sim_env.sim.release_rope('l') sim_env.sim.release_rope('r') sim_util.reset_arms_to_side(sim_env) if animate: sim_env.viewer.Step() return success, feasible, misgrasp, full_trajs
def compute_trans_traj(sim_env, new_xyz, seg_info, ignore_infeasibility=True, animate=False, interactive=False): sim_util.reset_arms_to_side(sim_env) redprint("Generating end-effector trajectory") old_xyz = np.squeeze(seg_info["cloud_xyz"]) old_xyz = clouds.downsample(old_xyz, DS_SIZE) new_xyz = clouds.downsample(new_xyz, DS_SIZE) link_names = ["%s_gripper_tool_frame" % lr for lr in ('lr')] hmat_list = [(lr, seg_info[ln]['hmat']) for lr, ln in zip('lr', link_names)] if GlobalVars.gripper_weighting: interest_pts = get_closing_pts(seg_info) else: interest_pts = None lr2eetraj, _, old_xyz_warped = warp_hmats_tfm(old_xyz, new_xyz, hmat_list, interest_pts) handles = [] if animate: handles.append(sim_env.env.plot3(old_xyz, 5, (1, 0, 0))) handles.append(sim_env.env.plot3(new_xyz, 5, (0, 0, 1))) handles.append(sim_env.env.plot3(old_xyz_warped, 5, (0, 1, 0))) miniseg_starts, miniseg_ends, _ = sim_util.split_trajectory_by_gripper( seg_info, thresh=GRIPPER_ANGLE_THRESHOLD) success = True feasible = True misgrasp = False print colorize.colorize("mini segments:", "red"), miniseg_starts, miniseg_ends full_trajs = [] prev_vals = {lr: None for lr in 'lr'} for (i_miniseg, (i_start, i_end)) in enumerate(zip(miniseg_starts, miniseg_ends)): ################################ redprint("Generating joint trajectory for part %i" % (i_miniseg)) # figure out how we're gonna resample stuff # Use inverse kinematics to get trajectory for initializing TrajOpt, # since demonstrations library does not contain joint angle data for # left and right arms ee_hmats = {} for lr in 'lr': ee_link_name = "%s_gripper_tool_frame" % lr # TODO: Change # of timesteps for resampling? ee_hmats[ee_link_name] = resampling.interp_hmats( np.arange(i_end + 1 - i_start), np.arange(i_end + 1 - i_start), lr2eetraj[lr][i_start:i_end + 1]) lr2oldtraj = get_old_joint_traj_ik(sim_env, ee_hmats, prev_vals, i_start, i_end) #lr2oldtraj = {} #for lr in 'lr': # manip_name = {"l":"leftarm", "r":"rightarm"}[lr] # old_joint_traj = asarray(seg_info[manip_name][i_start:i_end+1]) # #print (old_joint_traj[1:] - old_joint_traj[:-1]).ptp(axis=0), i_start, i_end # if sim_util.arm_moved(old_joint_traj): # lr2oldtraj[lr] = old_joint_traj if len(lr2oldtraj) > 0: old_total_traj = np.concatenate(lr2oldtraj.values(), 1) JOINT_LENGTH_PER_STEP = .1 _, timesteps_rs = sim_util.unif_resample(old_total_traj, JOINT_LENGTH_PER_STEP) #### ### Generate fullbody traj bodypart2traj = {} for (lr, old_joint_traj) in lr2oldtraj.items(): manip_name = {"l": "leftarm", "r": "rightarm"}[lr] old_joint_traj_rs = mu.interp2d(timesteps_rs, np.arange(len(old_joint_traj)), old_joint_traj) ee_link_name = "%s_gripper_tool_frame" % lr new_ee_traj = lr2eetraj[lr][i_start:i_end + 1] new_ee_traj_rs = resampling.interp_hmats( timesteps_rs, np.arange(len(new_ee_traj)), new_ee_traj) print "planning trajectory following" new_joint_traj, pose_errs = planning.plan_follow_traj( sim_env.robot, manip_name, sim_env.robot.GetLink(ee_link_name), new_ee_traj_rs, old_joint_traj_rs) prev_vals[lr] = new_joint_traj[-1] part_name = {"l": "larm", "r": "rarm"}[lr] bodypart2traj[part_name] = new_joint_traj ################################ redprint("Executing joint trajectory for part %i using arms '%s'" % (i_miniseg, bodypart2traj.keys())) full_traj = sim_util.getFullTraj(sim_env, bodypart2traj) full_trajs.append(full_traj) for lr in 'lr': gripper_open = sim_util.binarize_gripper( seg_info["%s_gripper_joint" % lr][i_start], GRIPPER_ANGLE_THRESHOLD) prev_gripper_open = sim_util.binarize_gripper( seg_info["%s_gripper_joint" % lr][i_start - 1], GRIPPER_ANGLE_THRESHOLD) if i_start != 0 else False if not sim_util.set_gripper_maybesim(sim_env, lr, gripper_open, prev_gripper_open): redprint("Grab %s failed" % lr) misgrasp = True success = False if not success: break if len(full_traj[0]) > 0: if not eval_util.traj_is_safe(sim_env, full_traj, COLLISION_DIST_THRESHOLD): redprint("Trajectory not feasible") feasible = False if feasible or ignore_infeasibility: success &= sim_util.sim_full_traj_maybesim( sim_env, full_traj, animate=animate, interactive=interactive) else: success = False if not success: break sim_env.sim.settle(animate=animate) sim_env.sim.release_rope('l') sim_env.sim.release_rope('r') sim_util.reset_arms_to_side(sim_env) if animate: sim_env.viewer.Step() return success, feasible, misgrasp, full_trajs
def compute_trans_traj(sim_env, new_xyz, seg_info, ignore_infeasibility=True, animate=False, interactive=False): sim_util.reset_arms_to_side(sim_env) redprint("Generating end-effector trajectory") old_xyz = np.squeeze(seg_info["cloud_xyz"]) old_xyz = clouds.downsample(old_xyz, DS_SIZE) new_xyz = clouds.downsample(new_xyz, DS_SIZE) link_names = ["%s_gripper_tool_frame"%lr for lr in ('lr')] hmat_list = [(lr, seg_info[ln]['hmat']) for lr, ln in zip('lr', link_names)] if GlobalVars.gripper_weighting: interest_pts = get_closing_pts(seg_info) else: interest_pts = None lr2eetraj, _, old_xyz_warped = warp_hmats_tfm(old_xyz, new_xyz, hmat_list, interest_pts) handles = [] if animate: handles.append(sim_env.env.plot3(old_xyz,5, (1,0,0))) handles.append(sim_env.env.plot3(new_xyz,5, (0,0,1))) handles.append(sim_env.env.plot3(old_xyz_warped,5, (0,1,0))) miniseg_starts, miniseg_ends, _ = sim_util.split_trajectory_by_gripper(seg_info, thresh = GRIPPER_ANGLE_THRESHOLD) success = True feasible = True misgrasp = False print colorize.colorize("mini segments:", "red"), miniseg_starts, miniseg_ends full_trajs = [] prev_vals = {lr:None for lr in 'lr'} for (i_miniseg, (i_start, i_end)) in enumerate(zip(miniseg_starts, miniseg_ends)): ################################ redprint("Generating joint trajectory for part %i"%(i_miniseg)) # figure out how we're gonna resample stuff # Use inverse kinematics to get trajectory for initializing TrajOpt, # since demonstrations library does not contain joint angle data for # left and right arms ee_hmats = {} for lr in 'lr': ee_link_name = "%s_gripper_tool_frame"%lr # TODO: Change # of timesteps for resampling? ee_hmats[ee_link_name] = resampling.interp_hmats(np.arange(i_end+1-i_start), np.arange(i_end+1-i_start), lr2eetraj[lr][i_start:i_end+1]) lr2oldtraj = get_old_joint_traj_ik(sim_env, ee_hmats, prev_vals, i_start, i_end) #lr2oldtraj = {} #for lr in 'lr': # manip_name = {"l":"leftarm", "r":"rightarm"}[lr] # old_joint_traj = asarray(seg_info[manip_name][i_start:i_end+1]) # #print (old_joint_traj[1:] - old_joint_traj[:-1]).ptp(axis=0), i_start, i_end # if sim_util.arm_moved(old_joint_traj): # lr2oldtraj[lr] = old_joint_traj if len(lr2oldtraj) > 0: old_total_traj = np.concatenate(lr2oldtraj.values(), 1) JOINT_LENGTH_PER_STEP = .1 _, timesteps_rs = sim_util.unif_resample(old_total_traj, JOINT_LENGTH_PER_STEP) #### ### Generate fullbody traj bodypart2traj = {} for (lr,old_joint_traj) in lr2oldtraj.items(): manip_name = {"l":"leftarm", "r":"rightarm"}[lr] old_joint_traj_rs = mu.interp2d(timesteps_rs, np.arange(len(old_joint_traj)), old_joint_traj) ee_link_name = "%s_gripper_tool_frame"%lr new_ee_traj = lr2eetraj[lr][i_start:i_end+1] new_ee_traj_rs = resampling.interp_hmats(timesteps_rs, np.arange(len(new_ee_traj)), new_ee_traj) print "planning trajectory following" new_joint_traj, pose_errs = planning.plan_follow_traj(sim_env.robot, manip_name, sim_env.robot.GetLink(ee_link_name), new_ee_traj_rs,old_joint_traj_rs) prev_vals[lr] = new_joint_traj[-1] part_name = {"l":"larm", "r":"rarm"}[lr] bodypart2traj[part_name] = new_joint_traj ################################ redprint("Executing joint trajectory for part %i using arms '%s'"%(i_miniseg, bodypart2traj.keys())) full_traj = sim_util.getFullTraj(sim_env, bodypart2traj) full_trajs.append(full_traj) for lr in 'lr': gripper_open = sim_util.binarize_gripper(seg_info["%s_gripper_joint"%lr][i_start], GRIPPER_ANGLE_THRESHOLD) prev_gripper_open = sim_util.binarize_gripper(seg_info["%s_gripper_joint"%lr][i_start-1], GRIPPER_ANGLE_THRESHOLD) if i_start != 0 else False if not sim_util.set_gripper_maybesim(sim_env, lr, gripper_open, prev_gripper_open): redprint("Grab %s failed" % lr) misgrasp = True success = False if not success: break if len(full_traj[0]) > 0: if not eval_util.traj_is_safe(sim_env, full_traj, COLLISION_DIST_THRESHOLD): redprint("Trajectory not feasible") feasible = False if feasible or ignore_infeasibility: success &= sim_util.sim_full_traj_maybesim(sim_env, full_traj, animate=animate, interactive=interactive) else: success = False if not success: break sim_env.sim.settle(animate=animate) sim_env.sim.release_rope('l') sim_env.sim.release_rope('r') sim_util.reset_arms_to_side(sim_env) if animate: sim_env.viewer.Step() return success, feasible, misgrasp, full_trajs
def compute_trans_traj(sim_env, new_xyz, seg_info, ignore_infeasibility=True, animate=False, interactive=False): redprint("Generating end-effector trajectory") old_xyz = np.squeeze(seg_info["cloud_xyz"]) old_xyz = clouds.downsample(old_xyz, DS_SIZE) l1 = len(old_xyz) new_xyz = clouds.downsample(new_xyz, DS_SIZE) l2 = len(new_xyz) print l1, l2 link_names = ["%s_gripper_tool_frame"%lr for lr in ('lr')] hmat_list = [(lr, seg_info[ln]['hmat']) for lr, ln in zip('lr', link_names)] if GlobalVars.gripper_weighting: interest_pts = get_closing_pts(seg_info) else: interest_pts = None lr2eetraj, _, old_xyz_warped, f = warp_hmats_tfm(old_xyz, new_xyz, hmat_list, interest_pts) handles = [] if animate: handles.extend(plotting_openrave.draw_grid(sim_env.env, f.transform_points, old_xyz.min(axis=0)-np.r_[0,0,.1], old_xyz.max(axis=0)+np.r_[0,0,.1], xres = .1, yres = .1, zres = .04)) handles.append(sim_env.env.plot3(old_xyz,5, (1,0,0))) # red: demonstration point cloud handles.append(sim_env.env.plot3(new_xyz,5, (0,0,1))) # blue: rope nodes handles.append(sim_env.env.plot3(old_xyz_warped,5, (0,1,0))) # green: warped point cloud from demonstration mapped_pts = [] for i in range(len(old_xyz)): mapped_pts.append(old_xyz[i]) mapped_pts.append(old_xyz_warped[i]) handles.append(sim_env.env.drawlinelist(np.array(mapped_pts), 1, [0.1,0.1,1])) for lr in 'lr': handles.append(sim_env.env.drawlinestrip(lr2eetraj[lr][:,:3,3], 2, (0,1,0,1))) for k, hmats in hmat_list: hmats_tfm = np.asarray([GlobalVars.init_tfm.dot(h) for h in hmats]) handles.append(sim_env.env.drawlinestrip(hmats_tfm[:,:3,3], 2, (1,0,0,1))) miniseg_starts, miniseg_ends, lr_open = sim_util.split_trajectory_by_gripper(seg_info, thresh=GRIPPER_ANGLE_THRESHOLD) success = True feasible = True misgrasp = False print colorize.colorize("mini segments:", "red"), miniseg_starts, miniseg_ends miniseg_trajs = [] prev_vals = {lr:None for lr in 'lr'} for (i_miniseg, (i_start, i_end)) in enumerate(zip(miniseg_starts, miniseg_ends)): ################################ redprint("Generating joint trajectory for part %i"%(i_miniseg)) ### adaptive resampling based on xyz in end_effector end_trans_trajs = np.zeros([i_end+1-i_start, 6]) for lr in 'lr': for i in xrange(i_start,i_end+1): if lr == 'l': end_trans_trajs[i-i_start, :3] = lr2eetraj[lr][i][:3,3] else: end_trans_trajs[i-i_start, 3:] = lr2eetraj[lr][i][:3,3] if True: adaptive_times, end_trans_trajs = resampling.adaptive_resample2(end_trans_trajs, 0.005) else: adaptive_times = range(len(end_trans_trajs)) miniseg_traj = {} for lr in 'lr': #ee_hmats = resampling.interp_hmats(np.arange(i_end+1-i_start), np.arange(i_end+1-i_start), lr2eetraj[lr][i_start:i_end+1]) ee_hmats = resampling.interp_hmats(adaptive_times, np.arange(i_end+1-i_start), lr2eetraj[lr][i_start:i_end+1]) # the interpolation above will then the velocity of the trajectory (since there are fewer waypoints). Resampling again to make sure # the trajectory has the same number of waypoints as before. ee_hmats = resampling.interp_hmats(np.arange(i_end+1-i_start), adaptive_times, ee_hmats) # if arm_moved(ee_hmats, floating=True): if True: miniseg_traj[lr] = ee_hmats safe_drop = {'l': True, 'r': True} for lr in 'lr': next_gripper_open = lr_open[lr][i_miniseg+1] if i_miniseg < len(miniseg_starts) - 1 else False gripper_open = lr_open[lr][i_miniseg] if next_gripper_open and not gripper_open: tfm = miniseg_traj[lr][-1] if tfm[2,3] > GlobalVars.table_height + 0.01: safe_drop[lr] = False #safe_drop = {'l': True, 'r': True} if not (safe_drop['l'] and safe_drop['r']): for lr in 'lr': if not safe_drop[lr]: tfm = miniseg_traj[lr][-1] for i in range(1, 8): safe_drop_tfm = tfm safe_drop_tfm[2,3] = tfm[2,3] - i / 10. * (tfm[2,3] - GlobalVars.table_height - 0.01) miniseg_traj[lr].append(safe_drop_tfm) else: for i in range(1, 8): miniseg_traj[lr].append(miniseg_traj[lr][-1]) miniseg_trajs.append(miniseg_traj) for lr in 'lr': hmats = np.asarray(miniseg_traj[lr]) handles.append(sim_env.env.drawlinestrip(hmats[:,:3,3], 2, (0,0,1,1))) redprint("Executing joint trajectory for part %i using arms '%s'"%(i_miniseg, miniseg_traj.keys())) for lr in 'lr': gripper_open = lr_open[lr][i_miniseg] prev_gripper_open = lr_open[lr][i_miniseg-1] if i_miniseg != 0 else False if not sim_util.set_gripper_maybesim(sim_env, lr, gripper_open, prev_gripper_open, floating=True): redprint("Grab %s failed"%lr) success = False if not success: break if len(miniseg_traj) > 0: success &= sim_util.exec_traj_sim(sim_env, miniseg_traj, animate=animate) if not success: break sim_env.sim.settle(animate=animate) sim_env.sim.release_rope('l') sim_env.sim.release_rope('r') if animate: sim_env.viewer.Step() return success, feasible, misgrasp, miniseg_trajs