Пример #1
0
def plot_Survival(filename, scaling_factor, spectrum, maximum, base_BP_positions, coefficients, Katz_coeffs, er_model, two_beams, plot_format = 'png', show = True):
    logging.info('Plotting Survival... ')

    # clear previous plots
    pylab.clf()
    
    m, D0, sigma, kappa = Katz_coeffs

    # first take wide range to determine where should plot end
    dx = 0.05
    X_wide = [ n * dx for n in range( int((base_BP_positions[-1] + 4) / dx)) ]
    if two_beams:
        X_wide = [ n * dx for n in range( int((base_BP_positions[0] + base_BP_positions[-1]) / dx)) ]
    Y_wide = []
        
    def calculateY( X_vect, coefficients, maximum, base_BP_positions, spectrum, scaling_factor, two_beams, m, D0, sigma, kappa, er_model):
      Y_vect = []
      from src import pyamtrack_SPC
      for x in X_vect:
        E_MeV_u_total = []
        particle_no_total = []
        fluence_cm2_total = []
        for i in range(len(coefficients)):
            shift = maximum - base_BP_positions[i]
            E_MeV_u, particle_no, fluence_cm2 = pyamtrack_SPC.spectrum_at_depth(x + shift, spectrum)
            fluence_cm2_coef = [f * coefficients[i] * scaling_factor for f in fluence_cm2]
            E_MeV_u_total += E_MeV_u
            particle_no_total += particle_no
            fluence_cm2_total += fluence_cm2_coef
            
            if two_beams:                
                plateau_dist = base_BP_positions[-1]
                plateau_prox = base_BP_positions[0]
                y = plateau_dist +  plateau_prox - x
                
                E_MeV_u_second, particle_no_second, fluence_cm2_second = pyamtrack_SPC.spectrum_at_depth(y + shift, spectrum)
                fluence_cm2_coef_second = [f * coefficients[i] * scaling_factor for f in fluence_cm2_second] # TODO check                                
                E_MeV_u_total += E_MeV_u_second
                particle_no_total += particle_no_second
                fluence_cm2_total += fluence_cm2_coef_second

            
        y = pyamtrack_SPC.survival(E_MeV_u_total, particle_no_total, fluence_cm2_total, m, D0, sigma, kappa, er_model)
        Y_vect.append(y)
      return Y_vect

    serial = common.check_option('serial')
    parallel = common.check_option('parallel')

    # Create jobserver
    job_server = pp.Server( secret = 'abcd' )
    ncpus = int(common.options['ncpu'])
    job_server.set_ncpus(ncpus)

    if serial:
       Y_wide = calculateY( X_wide, coefficients, maximum, base_BP_positions, spectrum, scaling_factor, two_beams, m, D0, sigma, kappa, er_model)

    if parallel:
	coefficients_p = []
	for c in coefficients:
      		coefficients_p.append(float(c))
	args = (coefficients_p, maximum, base_BP_positions, spectrum, scaling_factor, two_beams, m, D0, sigma, kappa, er_model)
	Y_wide = executeParallelMap( calculateY, args, X_wide)

    # plot line at 1
    pylab.axhline(1, color = 'g')

    pylab.plot(X_wide, Y_wide, color = 'r', label = 'survival')
               
    pylab.xlim(0.,X_wide[-1])

    pylab.grid(True)

    # save plot to file
    if filename != None:
        logging.info('Saving survival plot to file\'' + filename + '.' + plot_format + '\'...')
        pylab.savefig(filename + '.' + plot_format, format = plot_format)
        save_datafile(filename + '.dat', [X_wide,Y_wide])

    # show what has been plotted
    if show:
        pylab.show()
Пример #2
0
def main():

    # argument parsing:
    # http://docs.python.org/library/argparse.html#module-argparse
    description_string = """ Script for designing modulators. Options are
    read from configuration file 'modulatory.cfg'. Options passed directly
    as program parameters have higher priority.
    """
    parser = argparse.ArgumentParser(description=description_string)

    parser.add_argument('--range',
                        '-r',
                        action='store',
                        help='range of SOBP in mm')
    parser.add_argument('--spread',
                        '-s',
                        action='store',
                        help='width of SOBP in mm')
    parser.add_argument('--mesh',
                        '-m',
                        action='store',
                        help='size of mesh used when minimizing')
    parser.add_argument('--precision',
                        '-p',
                        action='store',
                        help='precision for fitting algorithm')
    parser.add_argument(
        '--interrupt_bound',
        action='store',
        help='interrupt fitting when SOBP is flat within this range')

    parser.add_argument('--verbose', action='store_true', help='be verbose')
    parser.add_argument('--debug',
                        action='store_true',
                        help='display debug messages')
    parser.add_argument('--version',
                        '-V',
                        action='store_true',
                        help='show version and exit')
    parser.add_argument('--noplot',
                        action='store_true',
                        help='do not generate plots')

    parser.add_argument('--logfile',
                        action='store',
                        help='where write logs to',
                        default='generation.log')
    parser.add_argument('--cfgfile',
                        action='store',
                        help='config file',
                        default='modulatory.cfg')
    parser.add_argument('--name',
                        '-n',
                        action='store',
                        help='name of modulator being generated')

    # doctest
    import doctest
    failure_count = doctest.testmod(common)[0]
    failure_count += doctest.testmod(generation_library)[0]
    failure_count += doctest.testmod(in_out)[0]
    failure_count += doctest.testmod(plotting)[0]
    failure_count += doctest.testmod()[0]
    if failure_count > 0:
        exit(-1)

    args_dict = common.parse_command_line_arguments(parser)

    config_dict = read_config(filename=args_dict['cfgfile'])
    common.options = merge_options_dictionaries_fav_first(
        args_dict, config_dict)

    # create folder fo output
    # output folder = name of the folder with system folder separator at end
    output_folder = create_output_folder(common.options['name']) + os.sep

    # copy configuration file
    copy(args_dict['cfgfile'], output_folder + args_dict['cfgfile'])

    common.setup_logging(filename=output_folder + common.options['logfile'],
                         write_on_screen=args_dict['verbose'],
                         display_debug=args_dict['debug'],
                         logger_name='')

    logging.debug('Options: %s', common.options)

    SOBP_range = float(common.options['range'])
    SOBP_spread = float(common.options['spread'])

    # GENERATION PROCESS

    spectrum_full = src.pyamtrack_SPC.extract_spectrum_at_range(
        common.options['spcdir'], SOBP_range)

    #spectrum = removeZeroFluenceItemsFromSpectrum( spectrum_full )
    spectrum = spectrum_full

    spectrum_dict = src.pyamtrack_SPC.get_spectrum_dictionary_depth(spectrum)

    BPsampled = sampleDoseFromBPdictionary(spectrum_dict)
    maximum = src.common.calculate_BP_maximum_position(BPsampled)
    logging.debug('BP maximum: %s', maximum)
    #printBP(BPsampled)

    base_BP_positions = calculate_base_BP_positions_given_number(
        first_BP_position=SOBP_range - SOBP_spread,
        last_BP_position=SOBP_range,
        n_of_base_BPs=int(common.options['number_of_base_bps']))
    logging.debug('Selected base BP positions: %s', base_BP_positions)

    scaled_spectrum_dict = {}
    initial_coefs = []
    bounds = []
    value_at_plateau = None

    # scale fluence to input dose
    if common.options['algorithm'] == 'survival':
        input_dose_Gy = 2.
        scaled_spectrum_dict = src.pyamtrack_SPC.scale_fluence_to_input_dose(
            input_dose_Gy, spectrum_dict)
        initial_coefs = [0.5 / len(base_BP_positions)] * len(base_BP_positions)
        initial_coefs[-1] *= 8
        initial_coefs[-2] *= 5
        bounds = [[
            0.1 / len(base_BP_positions), 10.0 / len(base_BP_positions)
        ]] * len(base_BP_positions)
        value_at_plateau = 0.2
    elif common.options['algorithm'] == 'dose':
        maximum_dose_Gy = 1.
        scaled_spectrum_dict = src.pyamtrack_SPC.scale_fluence_to_maximum_dose(
            maximum_dose_Gy, maximum, spectrum_dict)
        initial_coefs = [1. / len(base_BP_positions)] * len(base_BP_positions)
        initial_coefs[-1] = 1.
        bounds = [[0.0, 1.3]] * len(base_BP_positions)
        value_at_plateau = 1.
    else:
        logging.debug('Wrong algorithm type: %s', common.options['algorithm'])
        return 1
        # scale fluence to maximum dose for flat dose problem ??

    # optimize both base BPs coefficients and their positions
    # big_mesh_size = (base_BP_positions[1] - base_BP_positions[0])/4.
    big_mesh_size = float(common.options['mesh'])

    print "Starting from ", initial_coefs
    Katz_coefs = [
        float(common.options['m']),
        float(common.options['d0']),
        float(common.options['sigma0']),
        float(common.options['kappa'])
    ]

    plateau_shape_coefs = [
        float(common.options['plateau_shape_a0']),
        float(common.options['plateau_shape_a1']),
        float(common.options['plateau_shape_a2']),
        float(common.options['plateau_shape_a3'])
    ]

    first_coefficients, chi2 = fit(
        algorithm=common.options['algorithm'],
        local_max=maximum,
        base_BP_positions=base_BP_positions,
        spectrum=scaled_spectrum_dict,
        value_at_plateau=value_at_plateau,
        initial_coefficients=initial_coefs,
        Katz_coeff=Katz_coefs,
        two_beams=common.check_option('two_beams'),
        bounds=bounds,
        plateau_prox=SOBP_range - SOBP_spread,
        plateau_dist=SOBP_range,
        mesh_size=big_mesh_size,
        precision=float(common.options['precision']),
        fit_interrupt_bound=float(common.options['interrupt_bound']),
        plateau_shape_coefs=plateau_shape_coefs)

    coefficients = first_coefficients

    logging.info('Coefficients found: %s', coefficients)

    # PLOTTING
    if common.check_option('draw_plots') and common.options['noplot'] == False:
        src.plotting.plot_Dose(output_folder + "/dose", scaled_spectrum_dict,
                               maximum, base_BP_positions, coefficients,
                               common.check_option('two_beams'), 'pdf',
                               common.check_option('show_plots'))
        factor = 1.
        er_model = int(common.options['er_model'])
        src.plotting.plot_Survival(output_folder + "/survival", factor,
                                   scaled_spectrum_dict, maximum,
                                   base_BP_positions, coefficients,
                                   Katz_coefs, er_model,
                                   common.check_option('two_beams'), 'pdf',
                                   common.check_option('show_plots'))

    logging.info('END OF SCRIPT')
Пример #3
0
def plot_Dose(filename, spectrum, maximum, base_BP_positions, coefficients, two_beams, plot_format = 'png', show = True):
    logging.info('Plotting Dose... ')

    # clear previous plots
    pylab.clf()

    # first take wide range to determine where should plot end
    dx = 0.01
    X_wide = [ n * dx for n in range( int((base_BP_positions[-1] + 4) / dx)) ]

    serial = common.check_option('serial')
    parallel = common.check_option('parallel')

    if parallel:
       coefficients_p = []
       for c in coefficients:
       	coefficients_p.append(float(c))

    Y_SOBP = []
           
    if two_beams:
        X_wide = [ n * dx for n in range( int((base_BP_positions[0] + base_BP_positions[-1]) / dx)) ]
        plateau_dist = base_BP_positions[-1]
        plateau_prox = base_BP_positions[0]

	def calculateYa(X_vect, maximum, base_BP_positions, spectrum, plateau_dist, plateau_prox, coefficients):
	        from src import pyamtrack_SPC
	        Y_vect = [sum( [coefficients[i] * (pyamtrack_SPC.dose_at_depth(x, maximum, base_BP_positions[i], spectrum) + 
                                           pyamtrack_SPC.dose_at_depth(plateau_dist +  plateau_prox - x, maximum, base_BP_positions[i], spectrum))
                                          for i in range(len(coefficients)) ] ) for x in X_vect]
		return Y_vect

    	if serial:
		Y_SOBP = calculateYa(X_wide, maximum, base_BP_positions, spectrum, plateau_dist, plateau_prox, coefficients)

	if parallel:
		args = (maximum, base_BP_positions, spectrum, plateau_dist, plateau_prox, coefficients_p)
		Y_SOBP = executeParallelMap( calculateYa, args, X_wide)

    else:

	def calculateYb(X_vect, maximum, base_BP_positions, spectrum, coefficients):
	        from src import pyamtrack_SPC
	        Y_vect = [sum( [coefficients[i] * pyamtrack_SPC.dose_at_depth(x, maximum, base_BP_positions[i], spectrum)
                                          for i in range(len(coefficients)) ] ) for x in X_vect]
		return Y_vect

    	if serial:
		Y_SOBP = calculateYb(X_wide, maximum, base_BP_positions, spectrum, coefficients)

	if parallel:
		args = (maximum, base_BP_positions, spectrum, coefficients_p)
		Y_SOBP = executeParallelMap( calculateYb, args, X_wide)

    # plot line at 1
    pylab.axhline(1, color = 'g')

    pylab.plot(X_wide, Y_SOBP, color = 'r', label = 'calculated SOBP')

    listPartPeaksY = []
    for i in range(len(coefficients)):
	def calculateYc(X_vect, coefficient, maximum, base_BP_position, spectrum):
	        from src import pyamtrack_SPC
		return [coefficient * pyamtrack_SPC.dose_at_depth(x, maximum, base_BP_position, spectrum) for x in X_vect]
	if serial:
		Yi = calculateYc(X_wide, coefficients[i], maximum, base_BP_positions[i], spectrum)
	if parallel:
		args = (coefficients_p[i], maximum, base_BP_positions[i], spectrum)
		Yi = executeParallelMap( calculateYc, args, X_wide)

        listPartPeaksY.append(Yi)
        pylab.plot(X_wide, Yi, color = 'g', label = 'BP nr ' + str(i))
        if two_beams:
            plateau_dist = base_BP_positions[-1]
            plateau_prox = base_BP_positions[0]
            Yis = [coefficients[i] * pyamtrack_SPC.dose_at_depth(plateau_dist +  plateau_prox - x, maximum, base_BP_positions[i], spectrum) for x in X_wide]
            pylab.plot(X_wide, Yis, color = 'g', label = 'BP nr ' + str(i) + ' bis')
        
                
    pylab.xlim(0.,X_wide[-1])

    pylab.grid(True)

    # save plot to file
    if filename != None:
        logging.info('Saving SOBP plot to file\'' + filename + '.' + plot_format + '\'...')
        pylab.savefig(filename + '.' + plot_format, format = plot_format)
        save_datafile(filename + '.dat', [X_wide,Y_SOBP]+listPartPeaksY)

    # show what has been plotted
    if show:
        pylab.show()
Пример #4
0
def main():

    # argument parsing:
    # http://docs.python.org/library/argparse.html#module-argparse
    description_string = """ Script for designing modulators. Options are
    read from configuration file 'modulatory.cfg'. Options passed directly
    as program parameters have higher priority.
    """
    parser = argparse.ArgumentParser(description=description_string)

    parser.add_argument("--range", "-r", action="store", help="range of SOBP in mm")
    parser.add_argument("--spread", "-s", action="store", help="width of SOBP in mm")
    parser.add_argument("--mesh", "-m", action="store", help="size of mesh used when minimizing")
    parser.add_argument("--precision", "-p", action="store", help="precision for fitting algorithm")
    parser.add_argument(
        "--interrupt_bound", action="store", help="interrupt fitting when SOBP is flat within this range"
    )

    parser.add_argument("--verbose", action="store_true", help="be verbose")
    parser.add_argument("--debug", action="store_true", help="display debug messages")
    parser.add_argument("--version", "-V", action="store_true", help="show version and exit")
    parser.add_argument("--noplot", action="store_true", help="do not generate plots")

    parser.add_argument("--logfile", action="store", help="where write logs to", default="generation.log")
    parser.add_argument("--cfgfile", action="store", help="config file", default="modulatory.cfg")
    parser.add_argument("--name", "-n", action="store", help="name of modulator being generated")

    # doctest
    import doctest

    failure_count = doctest.testmod(common)[0]
    failure_count += doctest.testmod(generation_library)[0]
    failure_count += doctest.testmod(in_out)[0]
    failure_count += doctest.testmod(plotting)[0]
    failure_count += doctest.testmod()[0]
    if failure_count > 0:
        exit(-1)

    args_dict = common.parse_command_line_arguments(parser)

    config_dict = read_config(filename=args_dict["cfgfile"])
    common.options = merge_options_dictionaries_fav_first(args_dict, config_dict)

    # create folder fo output
    # output folder = name of the folder with system folder separator at end
    output_folder = create_output_folder(common.options["name"]) + os.sep

    # copy configuration file
    copy(args_dict["cfgfile"], output_folder + args_dict["cfgfile"])

    common.setup_logging(
        filename=output_folder + common.options["logfile"],
        write_on_screen=args_dict["verbose"],
        display_debug=args_dict["debug"],
        logger_name="",
    )

    logging.debug("Options: %s", common.options)

    SOBP_range = float(common.options["range"])
    SOBP_spread = float(common.options["spread"])

    # GENERATION PROCESS

    spectrum_full = src.pyamtrack_SPC.extract_spectrum_at_range(common.options["spcdir"], SOBP_range)

    # spectrum = removeZeroFluenceItemsFromSpectrum( spectrum_full )
    spectrum = spectrum_full

    spectrum_dict = src.pyamtrack_SPC.get_spectrum_dictionary_depth(spectrum)

    BPsampled = sampleDoseFromBPdictionary(spectrum_dict)
    maximum = src.common.calculate_BP_maximum_position(BPsampled)
    logging.debug("BP maximum: %s", maximum)
    # printBP(BPsampled)

    base_BP_positions = calculate_base_BP_positions_given_number(
        first_BP_position=SOBP_range - SOBP_spread,
        last_BP_position=SOBP_range,
        n_of_base_BPs=int(common.options["number_of_base_bps"]),
    )
    logging.debug("Selected base BP positions: %s", base_BP_positions)

    scaled_spectrum_dict = {}
    initial_coefs = []
    bounds = []
    value_at_plateau = None

    # scale fluence to input dose
    if common.options["algorithm"] == "survival":
        input_dose_Gy = 2.0
        scaled_spectrum_dict = src.pyamtrack_SPC.scale_fluence_to_input_dose(input_dose_Gy, spectrum_dict)
        initial_coefs = [0.5 / len(base_BP_positions)] * len(base_BP_positions)
        initial_coefs[-1] *= 8
        initial_coefs[-2] *= 5
        bounds = [[0.1 / len(base_BP_positions), 10.0 / len(base_BP_positions)]] * len(base_BP_positions)
        value_at_plateau = 0.2
    elif common.options["algorithm"] == "dose":
        maximum_dose_Gy = 1.0
        scaled_spectrum_dict = src.pyamtrack_SPC.scale_fluence_to_maximum_dose(maximum_dose_Gy, maximum, spectrum_dict)
        initial_coefs = [1.0 / len(base_BP_positions)] * len(base_BP_positions)
        initial_coefs[-1] = 1.0
        bounds = [[0.0, 1.3]] * len(base_BP_positions)
        value_at_plateau = 1.0
    else:
        logging.debug("Wrong algorithm type: %s", common.options["algorithm"])
        return 1
        # scale fluence to maximum dose for flat dose problem ??

    # optimize both base BPs coefficients and their positions
    # big_mesh_size = (base_BP_positions[1] - base_BP_positions[0])/4.
    big_mesh_size = float(common.options["mesh"])

    print "Starting from ", initial_coefs
    Katz_coefs = [
        float(common.options["m"]),
        float(common.options["d0"]),
        float(common.options["sigma0"]),
        float(common.options["kappa"]),
    ]

    plateau_shape_coefs = [
        float(common.options["plateau_shape_a0"]),
        float(common.options["plateau_shape_a1"]),
        float(common.options["plateau_shape_a2"]),
        float(common.options["plateau_shape_a3"]),
    ]

    first_coefficients, chi2 = fit(
        algorithm=common.options["algorithm"],
        local_max=maximum,
        base_BP_positions=base_BP_positions,
        spectrum=scaled_spectrum_dict,
        value_at_plateau=value_at_plateau,
        initial_coefficients=initial_coefs,
        Katz_coeff=Katz_coefs,
        two_beams=common.check_option("two_beams"),
        bounds=bounds,
        plateau_prox=SOBP_range - SOBP_spread,
        plateau_dist=SOBP_range,
        mesh_size=big_mesh_size,
        precision=float(common.options["precision"]),
        fit_interrupt_bound=float(common.options["interrupt_bound"]),
        plateau_shape_coefs=plateau_shape_coefs,
    )

    coefficients = first_coefficients

    logging.info("Coefficients found: %s", coefficients)

    # PLOTTING
    if common.check_option("draw_plots") and common.options["noplot"] == False:
        src.plotting.plot_Dose(
            output_folder + "/dose",
            scaled_spectrum_dict,
            maximum,
            base_BP_positions,
            coefficients,
            common.check_option("two_beams"),
            "pdf",
            common.check_option("show_plots"),
        )
        factor = 1.0
        er_model = int(common.options["er_model"])
        src.plotting.plot_Survival(
            output_folder + "/survival",
            factor,
            scaled_spectrum_dict,
            maximum,
            base_BP_positions,
            coefficients,
            Katz_coefs,
            er_model,
            common.check_option("two_beams"),
            "pdf",
            common.check_option("show_plots"),
        )

    logging.info("END OF SCRIPT")