Пример #1
0
    def linearize_freqs(self, delta_freq=None):
        """Rebin frequencies so that the frequency axis is linear.

        Parameters
        ----------
        delta_freq : float
            Difference between consecutive values on the new frequency axis.
            Defaults to half of smallest delta in current frequency axis.
            Compare Nyquist-Shannon sampling theorem.
        """
        if delta_freq is None:
            # Nyquist–Shannon sampling theorem
            delta_freq = _min_delt(self.freq_axis) / 2.
        nsize = (self.freq_axis.max() - self.freq_axis.min()) / delta_freq + 1
        new = np.zeros((nsize, self.shape[1]), dtype=self.data.dtype)

        freqs = self.freq_axis - self.freq_axis.max()
        freqs = freqs / delta_freq

        midpoints = np.round((freqs[:-1] + freqs[1:]) / 2)
        fillto = np.concatenate(
            [midpoints - 1, np.round([freqs[-1]]) - 1]
        )
        fillfrom = np.concatenate(
            [np.round([freqs[0]]), midpoints - 1]
        )

        fillto = np.abs(fillto)
        fillfrom = np.abs(fillfrom)

        for row, from_, to_ in izip(self, fillfrom, fillto):
            new[from_: to_] = row

        vrs = self._get_params()
        vrs.update({
            'freq_axis': np.linspace(
                self.freq_axis.max(), self.freq_axis.min(), nsize
            )
        })

        return self.__class__(new, **vrs)
Пример #2
0
    def interpolate(self, frequency):
        """
        Linearly interpolate intensity at unknown frequency using linear
        interpolation of its two neighbours.

        Parameters
        ----------
        frequency : float or int
            Unknown frequency for which to linearly interpolate the intensities.
            freq_axis[0] >= frequency >= self_freq_axis[-1]
        """
        lfreq, lvalue = None, None
        for freq, value in izip(self.freq_axis, self.data[:, :]):
            if freq < frequency:
                break
            lfreq, lvalue = freq, value
        else:
            raise ValueError("Frequency not in interpolation range")
        if lfreq is None:
            raise ValueError("Frequency not in interpolation range")
        diff = frequency - freq  # pylint: disable=W0631
        ldiff = lfreq - frequency
        return (ldiff * value + diff * lvalue) / (diff + ldiff)  # pylint: disable=W0631
Пример #3
0
    def interpolate(self, frequency):
        """
        Linearly interpolate intensity at unknown frequency using linear
        interpolation of its two neighbours.

        Parameters
        ----------
        frequency : float or int
            Unknown frequency for which to linearly interpolate the intensities.
            freq_axis[0] >= frequency >= self_freq_axis[-1]
        """
        lfreq, lvalue = None, None
        for freq, value in izip(self.freq_axis, self.data[:, :]):
            if freq < frequency:
                break
            lfreq, lvalue = freq, value
        else:
            raise ValueError("Frequency not in interpolation range")
        if lfreq is None:
            raise ValueError("Frequency not in interpolation range")
        diff = frequency - freq # pylint: disable=W0631
        ldiff = lfreq - frequency
        return (ldiff * value + diff * lvalue) / (diff + ldiff) # pylint: disable=W0631
Пример #4
0
    def linearize_freqs(self, delta_freq=None):
        """Rebin frequencies so that the frequency axis is linear.

        Parameters
        ----------
        delta_freq : float
            Difference between consecutive values on the new frequency axis.
            Defaults to half of smallest delta in current frequency axis.
            Compare Nyquist-Shannon sampling theorem.
        """
        if delta_freq is None:
            # Nyquist–Shannon sampling theorem
            delta_freq = _min_delt(self.freq_axis) / 2.
        nsize = (self.freq_axis.max() - self.freq_axis.min()) / delta_freq + 1
        new = np.zeros((nsize, self.shape[1]), dtype=self.data.dtype)

        freqs = self.freq_axis - self.freq_axis.max()
        freqs = freqs / delta_freq

        midpoints = np.round((freqs[:-1] + freqs[1:]) / 2)
        fillto = np.concatenate([midpoints - 1, np.round([freqs[-1]]) - 1])
        fillfrom = np.concatenate([np.round([freqs[0]]), midpoints - 1])

        fillto = np.abs(fillto)
        fillfrom = np.abs(fillfrom)

        for row, from_, to_ in izip(self, fillfrom, fillto):
            new[from_:to_] = row

        vrs = self._get_params()
        vrs.update({
            'freq_axis':
            np.linspace(self.freq_axis.max(), self.freq_axis.min(), nsize)
        })

        return self.__class__(new, **vrs)
Пример #5
0
    def join_many(cls,
                  specs,
                  mk_arr=None,
                  nonlinear=False,
                  maxgap=0,
                  fill=JOIN_REPEAT):
        """Produce new Spectrogram that contains spectrograms
        joined together in time.

        Parameters
        ----------
        specs : list
            List of spectrograms to join together in time.
        nonlinear : bool
            If True, leave out gaps between spectrograms. Else, fill them with
            the value specified in fill.
        maxgap : float, int or None
            Largest gap to allow in second. If None, allow gap of arbitrary
            size.
        fill : float or int
            Value to fill missing values (assuming nonlinear=False) with.
            Can be LinearTimeSpectrogram.JOIN_REPEAT to repeat the values for
            the time just before the gap.
        mk_array: function
            Function that is called to create the resulting array. Can be set
            to LinearTimeSpectrogram.memap(filename) to create a memory mapped
            result array.
        """
        # XXX: Only load header and load contents of files
        # on demand.
        mask = None

        if mk_arr is None:
            mk_arr = cls.make_array

        specs = sorted(specs, key=lambda x: x.start)

        freqs = specs[0].freq_axis
        if not all(np.array_equal(freqs, sp.freq_axis) for sp in specs):
            raise ValueError("Frequency channels do not match.")

        # Smallest time-delta becomes the common time-delta.
        min_delt = min(sp.t_delt for sp in specs)
        dtype_ = max(sp.dtype for sp in specs)

        specs = [sp.resample_time(min_delt) for sp in specs]
        size = sum(sp.shape[1] for sp in specs)

        data = specs[0]
        start_day = data.start

        xs = []
        last = data
        for elem in specs[1:]:
            e_init = (SECONDS_PER_DAY *
                      (get_day(elem.start) - get_day(start_day)).days +
                      elem.t_init)
            x = int((e_init - last.t_init) / min_delt)
            xs.append(x)
            diff = last.shape[1] - x

            if maxgap is not None and -diff > maxgap / min_delt:
                raise ValueError("Too large gap.")

            # If we leave out undefined values, we do not want to
            # add values here if x > t_res.
            if nonlinear:
                size -= max(0, diff)
            else:
                size -= diff

            last = elem

        # The non existing element after the last one starts after
        # the last one. Needed to keep implementation below sane.
        xs.append(specs[-1].shape[1])

        # We do that here so the user can pass a memory mapped
        # array if they'd like to.
        arr = mk_arr((data.shape[0], size), dtype_)
        time_axis = np.zeros((size, ))
        sx = 0
        # Amount of pixels left out due to non-linearity. Needs to be
        # considered for correct time axes.
        sd = 0
        for x, elem in izip(xs, specs):
            diff = x - elem.shape[1]
            e_time_axis = elem.time_axis

            elem = elem.data

            if x > elem.shape[1]:
                if nonlinear:
                    x = elem.shape[1]
                else:
                    # If we want to stay linear, fill up the missing
                    # pixels with placeholder zeros.
                    filler = np.zeros((data.shape[0], diff))
                    if fill is cls.JOIN_REPEAT:
                        filler[:, :] = elem[:, -1, np.newaxis]
                    else:
                        filler[:] = fill
                    minimum = e_time_axis[-1]
                    e_time_axis = np.concatenate([
                        e_time_axis,
                        np.linspace(minimum + min_delt,
                                    minimum + diff * min_delt, diff)
                    ])
                    elem = np.concatenate([elem, filler], 1)
            arr[:, sx:sx + x] = elem[:, :x]

            if diff > 0:
                if mask is None:
                    mask = np.zeros((data.shape[0], size), dtype=np.uint8)
                mask[:, sx + x - diff:sx + x] = 1
            time_axis[sx:sx + x] = e_time_axis[:x] + data.t_delt * (sx + sd)
            if nonlinear:
                sd += max(0, diff)
            sx += x
        params = {
            'time_axis': time_axis,
            'freq_axis': data.freq_axis,
            'start': data.start,
            'end': specs[-1].end,
            't_delt': data.t_delt,
            't_init': data.t_init,
            't_label': data.t_label,
            'f_label': data.f_label,
            'content': data.content,
            'instruments': _union(spec.instruments for spec in specs),
        }
        if mask is not None:
            arr = ma.array(arr, mask=mask)
        if nonlinear:
            del params['t_delt']
            return Spectrogram(arr, **params)
        return common_base(specs)(arr, **params)
Пример #6
0
    def join_many(cls, specs, mk_arr=None, nonlinear=False,
        maxgap=0, fill=JOIN_REPEAT):
        """Produce new Spectrogram that contains spectrograms
        joined together in time.

        Parameters
        ----------
        specs : list
            List of spectrograms to join together in time.
        nonlinear : bool
            If True, leave out gaps between spectrograms. Else, fill them with
            the value specified in fill.
        maxgap : float, int or None
            Largest gap to allow in second. If None, allow gap of arbitrary
            size.
        fill : float or int
            Value to fill missing values (assuming nonlinear=False) with.
            Can be LinearTimeSpectrogram.JOIN_REPEAT to repeat the values for
            the time just before the gap.
        mk_array: function
            Function that is called to create the resulting array. Can be set
            to LinearTimeSpectrogram.memap(filename) to create a memory mapped
            result array.
        """
        # XXX: Only load header and load contents of files
        # on demand.
        mask = None

        if mk_arr is None:
            mk_arr = cls.make_array

        specs = sorted(specs, key=lambda x: x.start)

        freqs = specs[0].freq_axis
        if not all(np.array_equal(freqs, sp.freq_axis) for sp in specs):
            raise ValueError("Frequency channels do not match.")

        # Smallest time-delta becomes the common time-delta.
        min_delt = min(sp.t_delt for sp in specs)
        dtype_ = max(sp.dtype for sp in specs)

        specs = [sp.resample_time(min_delt) for sp in specs]
        size = sum(sp.shape[1] for sp in specs)

        data = specs[0]
        start_day = data.start

        xs = []
        last = data
        for elem in specs[1:]:
            e_init = (
                SECONDS_PER_DAY * (
                    get_day(elem.start) - get_day(start_day)
                ).days + elem.t_init
            )
            x = int((e_init - last.t_init) / min_delt)
            xs.append(x)
            diff = last.shape[1] - x

            if maxgap is not None and -diff > maxgap / min_delt:
                raise ValueError("Too large gap.")

            # If we leave out undefined values, we do not want to
            # add values here if x > t_res.
            if nonlinear:
                size -= max(0, diff)
            else:
                size -= diff

            last = elem

        # The non existing element after the last one starts after
        # the last one. Needed to keep implementation below sane.
        xs.append(specs[-1].shape[1])

        # We do that here so the user can pass a memory mapped
        # array if they'd like to.
        arr = mk_arr((data.shape[0], size), dtype_)
        time_axis = np.zeros((size,))
        sx = 0
        # Amount of pixels left out due to non-linearity. Needs to be
        # considered for correct time axes.
        sd = 0
        for x, elem in izip(xs, specs):
            diff = x - elem.shape[1]
            e_time_axis = elem.time_axis

            elem = elem.data

            if x > elem.shape[1]:
                if nonlinear:
                    x = elem.shape[1]
                else:
                    # If we want to stay linear, fill up the missing
                    # pixels with placeholder zeros.
                    filler = np.zeros((data.shape[0], diff))
                    if fill is cls.JOIN_REPEAT:
                        filler[:, :] = elem[:, -1, np.newaxis]
                    else:
                        filler[:] = fill
                    minimum = e_time_axis[-1]
                    e_time_axis = np.concatenate([
                        e_time_axis,
                        np.linspace(
                            minimum + min_delt,
                            minimum + diff * min_delt,
                            diff
                        )
                    ])
                    elem = np.concatenate([elem, filler], 1)
            arr[:, sx:sx + x] = elem[:, :x]

            if diff > 0:
                if mask is None:
                    mask = np.zeros((data.shape[0], size), dtype=np.uint8)
                mask[:, sx + x - diff:sx + x] = 1
            time_axis[sx:sx + x] = e_time_axis[:x] + data.t_delt * (sx + sd)
            if nonlinear:
                sd += max(0, diff)
            sx += x
        params = {
            'time_axis': time_axis,
            'freq_axis': data.freq_axis,
            'start': data.start,
            'end': specs[-1].end,
            't_delt': data.t_delt,
            't_init': data.t_init,
            't_label': data.t_label,
            'f_label': data.f_label,
            'content': data.content,
            'instruments': _union(spec.instruments for spec in specs),
        }
        if mask is not None:
            arr = ma.array(arr, mask=mask)
        if nonlinear:
            del params['t_delt']
            return Spectrogram(arr, **params)
        return common_base(specs)(arr, **params)