Пример #1
0
def test_correct_arguments():
    raises(ValueError, lambda: R2.e_x(R2.e_x))
    raises(ValueError, lambda: R2.e_x(R2.dx))

    raises(ValueError, lambda: Commutator(R2.e_x, R2.x))
    raises(ValueError, lambda: Commutator(R2.dx, R2.e_x))

    raises(ValueError, lambda: Differential(Differential(R2.e_x)))

    raises(ValueError, lambda: R2.dx(R2.x))

    raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx))
    raises(ValueError, lambda: LieDerivative(R2.x, R2.dx))

    raises(ValueError, lambda: CovarDerivativeOp(R2.dx, []))
    raises(ValueError, lambda: CovarDerivativeOp(R2.x, []))

    a = Symbol('a')
    raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2])))
    raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2])))

    raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2])))
    raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2])))

    raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx))
    raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx))

    raises(ValueError, lambda: contravariant_order(R2.e_x * R2.e_y))
    raises(ValueError, lambda: covariant_order(R2.dx * R2.dy))
Пример #2
0
def test_correct_arguments():
    raises(ValueError, lambda : R2.e_x(R2.e_x))
    raises(ValueError, lambda : R2.e_x(R2.dx))

    raises(ValueError, lambda : Commutator(R2.e_x, R2.x))
    raises(ValueError, lambda : Commutator(R2.dx, R2.e_x))

    raises(ValueError, lambda : Differential(Differential(R2.e_x)))

    raises(ValueError, lambda : R2.dx(R2.x))

    raises(ValueError, lambda : TensorProduct(R2.e_x, R2.dx))

    raises(ValueError, lambda : LieDerivative(R2.dx, R2.dx))
    raises(ValueError, lambda : LieDerivative(R2.x, R2.dx))

    raises(ValueError, lambda : CovarDerivativeOp(R2.dx, []))
    raises(ValueError, lambda : CovarDerivativeOp(R2.x, []))

    a = Symbol('a')
    raises(ValueError, lambda : intcurve_series(R2.dx, a, R2_r.point([1,2])))
    raises(ValueError, lambda : intcurve_series(R2.x, a, R2_r.point([1,2])))

    raises(ValueError, lambda : intcurve_diffequ(R2.dx, a, R2_r.point([1,2])))
    raises(ValueError, lambda : intcurve_diffequ(R2.x, a, R2_r.point([1,2])))

    raises(ValueError, lambda : contravariant_order(R2.e_x + R2.dx))
    raises(ValueError, lambda : covariant_order(R2.e_x + R2.dx))

    raises(ValueError, lambda : contravariant_order(R2.e_x*R2.e_y))
    raises(ValueError, lambda : covariant_order(R2.dx*R2.dy))
Пример #3
0
def test_functional_diffgeom_ch3():
    x0, y0 = symbols('x0, y0', real=True)
    x, y, t = symbols('x, y, t', real=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])

    s_field = f(R2.x, R2.y)
    v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
    assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
        x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)

    assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
    v = R2.e_x + 2*R2.e_y
    s = R2.r**2 + 3*R2.x
    assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
    series_x, series_y = zip(*series)
    assert all(
        [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
    assert all(
        [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
def test_functional_diffgeom_ch3():
    x0, y0 = symbols('x0, y0', real=True)
    x, y, t = symbols('x, y, t', real=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])

    s_field = f(R2.x, R2.y)
    v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
    assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
        x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)

    assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
    v = R2.e_x + 2*R2.e_y
    s = R2.r**2 + 3*R2.x
    assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
    series_x, series_y = zip(*series)
    assert all(
        [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
    assert all(
        [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
Пример #5
0
from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
TP = TensorProduct
ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
ch
cvd = CovarDerivativeOp(R2.x*R2.e_x, ch)
cvd(R2.x)
cvd(R2.x*R2.e_x)
#intcurve_series
from sympy.abc import t, x, y
from sympy.diffgeom.rn import R2, R2_p, R2_r
from sympy.diffgeom import intcurve_series
# Specify a starting point and a vector field:
start_point = R2_r.point([x, y])
vector_field = R2_r.e_x
# Calculate the series:
intcurve_series(vector_field, t, start_point, n=3)
# Or get the elements of the expansion in a list:
series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
series[0]
series[1]
series[2]
#intcurve_diffequ
from sympy.abc import t
from sympy.diffgeom.rn import R2, R2_p, R2_r
from sympy.diffgeom import intcurve_diffequ
#Specify a starting point and a vector field:
start_point = R2_r.point([0, 1])
vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
# get the equations, 
equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
equations