Пример #1
0
def test_clear_coefficients():
    from sympy.simplify.simplify import clear_coefficients
    assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
    assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), S(1)/6)
    assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + S(1)/6)
    assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
    assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
Пример #2
0
def test_clear_coefficients():
    from sympy.simplify.simplify import clear_coefficients
    assert clear_coefficients(4 * y * (6 * x + 3)) == (y * (2 * x + 1), 0)
    assert clear_coefficients(4 * y * (6 * x + 3) - 2) == (y * (2 * x + 1),
                                                           S(1) / 6)
    assert clear_coefficients(4 * y * (6 * x + 3) - 2,
                              x) == (y * (2 * x + 1), x / 12 + S(1) / 6)
    assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
    assert clear_coefficients(4 * sqrt(2) - 2) == (sqrt(2), S.Half)
Пример #3
0
def test_clear_coefficients():
    from sympy.simplify.simplify import clear_coefficients
    assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
    assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), Rational(1, 6))
    assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + Rational(1, 6))
    assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
    assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
    assert clear_coefficients(S(3), x) == (0, x - 3)
    assert clear_coefficients(S.Infinity, x) == (S.Infinity, x)
    assert clear_coefficients(-S.Pi, x) == (S.Pi, -x)
    assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6)
Пример #4
0
def test_clear_coefficients():
    from sympy.simplify.simplify import clear_coefficients
    assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
    assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), S(1)/6)
    assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + S(1)/6)
    assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
    assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
    assert clear_coefficients(S(3), x) == (0, x - 3)
    assert clear_coefficients(S.Infinity, x) == (S.Infinity, x)
    assert clear_coefficients(-S.Pi, x) == (S.Pi, -x)
    assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6)
Пример #5
0
def is_eq(lhs, rhs, assumptions=None):
    """
    Fuzzy bool representing mathematical equality between *lhs* and *rhs*.

    Parameters
    ==========

    lhs : Expr
        The left-hand side of the expression, must be sympified.

    rhs : Expr
        The right-hand side of the expression, must be sympified.

    assumptions: Boolean, optional
        Assumptions taken to evaluate the equality.

    Returns
    =======

    ``True`` if *lhs* is equal to *rhs*, ``False`` is *lhs* is not equal to *rhs*,
    and ``None`` if the comparison between *lhs* and *rhs* is indeterminate.

    Explanation
    ===========

    This function is intended to give a relatively fast determination and
    deliberately does not attempt slow calculations that might help in
    obtaining a determination of True or False in more difficult cases.

    :func:`~.is_neq` calls this function to return its value, so supporting
    new type with this function will ensure correct behavior for ``is_neq``
    as well.

    Examples
    ========

    >>> from sympy import Q, S
    >>> from sympy.core.relational import is_eq, is_neq
    >>> from sympy.abc import x
    >>> is_eq(S(0), S(0))
    True
    >>> is_neq(S(0), S(0))
    False
    >>> is_eq(S(0), S(2))
    False
    >>> is_neq(S(0), S(2))
    True

    Assumptions can be passed to evaluate the equality which is otherwise
    indeterminate.

    >>> print(is_eq(x, S(0)))
    None
    >>> is_eq(x, S(0), assumptions=Q.zero(x))
    True

    New types can be supported by dispatching to ``_eval_is_eq``.

    >>> from sympy import Basic, sympify
    >>> from sympy.multipledispatch import dispatch
    >>> class MyBasic(Basic):
    ...     def __new__(cls, arg):
    ...         return Basic.__new__(cls, sympify(arg))
    ...     @property
    ...     def value(self):
    ...         return self.args[0]
    ...
    >>> @dispatch(MyBasic, MyBasic)
    ... def _eval_is_eq(a, b):
    ...     return is_eq(a.value, b.value)
    ...
    >>> a = MyBasic(1)
    >>> b = MyBasic(1)
    >>> is_eq(a, b)
    True
    >>> is_neq(a, b)
    False

    """
    from sympy.assumptions.wrapper import (AssumptionsWrapper, is_infinite,
                                           is_extended_real)
    from sympy.core.add import Add
    from sympy.functions.elementary.complexes import arg
    from sympy.simplify.simplify import clear_coefficients
    from sympy.utilities.iterables import sift

    # here, _eval_Eq is only called for backwards compatibility
    # new code should use is_eq with multiple dispatch as
    # outlined in the docstring
    for side1, side2 in (lhs, rhs), (rhs, lhs):
        eval_func = getattr(side1, '_eval_Eq', None)
        if eval_func is not None:
            retval = eval_func(side2)
            if retval is not None:
                return retval

    retval = _eval_is_eq(lhs, rhs)
    if retval is not None:
        return retval

    if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
        retval = _eval_is_eq(rhs, lhs)
        if retval is not None:
            return retval

    # retval is still None, so go through the equality logic
    # If expressions have the same structure, they must be equal.
    if lhs == rhs:
        return True  # e.g. True == True
    elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
        return False  # True != False
    elif not (lhs.is_Symbol or rhs.is_Symbol) and (isinstance(lhs, Boolean) !=
                                                   isinstance(rhs, Boolean)):
        return False  # only Booleans can equal Booleans

    _lhs = AssumptionsWrapper(lhs, assumptions)
    _rhs = AssumptionsWrapper(rhs, assumptions)

    if _lhs.is_infinite or _rhs.is_infinite:
        if fuzzy_xor([_lhs.is_infinite, _rhs.is_infinite]):
            return False
        if fuzzy_xor([_lhs.is_extended_real, _rhs.is_extended_real]):
            return False
        if fuzzy_and([_lhs.is_extended_real, _rhs.is_extended_real]):
            return fuzzy_xor([
                _lhs.is_extended_positive,
                fuzzy_not(_rhs.is_extended_positive)
            ])

        # Try to split real/imaginary parts and equate them
        I = S.ImaginaryUnit

        def split_real_imag(expr):
            real_imag = lambda t: (
                'real' if is_extended_real(t, assumptions) else 'imag'
                if is_extended_real(I * t, assumptions) else None)
            return sift(Add.make_args(expr), real_imag)

        lhs_ri = split_real_imag(lhs)
        if not lhs_ri[None]:
            rhs_ri = split_real_imag(rhs)
            if not rhs_ri[None]:
                eq_real = is_eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']),
                                assumptions)
                eq_imag = is_eq(I * Add(*lhs_ri['imag']),
                                I * Add(*rhs_ri['imag']), assumptions)
                return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))

        # Compare e.g. zoo with 1+I*oo by comparing args
        arglhs = arg(lhs)
        argrhs = arg(rhs)
        # Guard against Eq(nan, nan) -> Falsesymp
        if not (arglhs == S.NaN and argrhs == S.NaN):
            return fuzzy_bool(is_eq(arglhs, argrhs, assumptions))

    if all(isinstance(i, Expr) for i in (lhs, rhs)):
        # see if the difference evaluates
        dif = lhs - rhs
        _dif = AssumptionsWrapper(dif, assumptions)
        z = _dif.is_zero
        if z is not None:
            if z is False and _dif.is_commutative:  # issue 10728
                return False
            if z:
                return True

        n2 = _n2(lhs, rhs)
        if n2 is not None:
            return _sympify(n2 == 0)

        # see if the ratio evaluates
        n, d = dif.as_numer_denom()
        rv = None
        _n = AssumptionsWrapper(n, assumptions)
        _d = AssumptionsWrapper(d, assumptions)
        if _n.is_zero:
            rv = _d.is_nonzero
        elif _n.is_finite:
            if _d.is_infinite:
                rv = True
            elif _n.is_zero is False:
                rv = _d.is_infinite
                if rv is None:
                    # if the condition that makes the denominator
                    # infinite does not make the original expression
                    # True then False can be returned
                    l, r = clear_coefficients(d, S.Infinity)
                    args = [_.subs(l, r) for _ in (lhs, rhs)]
                    if args != [lhs, rhs]:
                        rv = fuzzy_bool(is_eq(*args, assumptions))
                        if rv is True:
                            rv = None
        elif any(is_infinite(a, assumptions) for a in Add.make_args(n)):
            # (inf or nan)/x != 0
            rv = False
        if rv is not None:
            return rv
Пример #6
0
    def __new__(cls, lhs, rhs=0, **options):
        from sympy.core.add import Add
        from sympy.core.logic import fuzzy_bool
        from sympy.core.expr import _n2
        from sympy.simplify.simplify import clear_coefficients

        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true  # e.g. True == True
            elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
                return S.false  # True != False
            elif not (lhs.is_Symbol or rhs.is_Symbol) and (isinstance(
                    lhs, Boolean) != isinstance(rhs, Boolean)):
                return S.false  # only Booleans can equal Booleans

            # check finiteness
            fin = L, R = [i.is_finite for i in (lhs, rhs)]
            if None not in fin:
                if L != R:
                    return S.false
                if L is False:
                    if lhs == -rhs:  # Eq(oo, -oo)
                        return S.false
                    return S.true
            elif None in fin and False in fin:
                return Relational.__new__(cls, lhs, rhs, **options)

            if all(isinstance(i, Expr) for i in (lhs, rhs)):
                # see if the difference evaluates
                dif = lhs - rhs
                z = dif.is_zero
                if z is not None:
                    if z is False and dif.is_commutative:  # issue 10728
                        return S.false
                    if z:
                        return S.true
                # evaluate numerically if possible
                n2 = _n2(lhs, rhs)
                if n2 is not None:
                    return _sympify(n2 == 0)
                # see if the ratio evaluates
                n, d = dif.as_numer_denom()
                rv = None
                if n.is_zero:
                    rv = d.is_nonzero
                elif n.is_finite:
                    if d.is_infinite:
                        rv = S.true
                    elif n.is_zero is False:
                        rv = d.is_infinite
                        if rv is None:
                            # if the condition that makes the denominator infinite does not
                            # make the original expression True then False can be returned
                            l, r = clear_coefficients(d, S.Infinity)
                            args = [_.subs(l, r) for _ in (lhs, rhs)]
                            if args != [lhs, rhs]:
                                rv = fuzzy_bool(Eq(*args))
                                if rv is True:
                                    rv = None
                elif any(a.is_infinite
                         for a in Add.make_args(n)):  # (inf or nan)/x != 0
                    rv = S.false
                if rv is not None:
                    return _sympify(rv)

        return Relational.__new__(cls, lhs, rhs, **options)
Пример #7
0
    def __new__(cls, lhs, rhs=0, **options):
        from sympy.core.add import Add
        from sympy.core.logic import fuzzy_bool
        from sympy.core.expr import _n2
        from sympy.simplify.simplify import clear_coefficients

        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true
            elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
                return S.false

            # check finiteness
            fin = L, R = [i.is_finite for i in (lhs, rhs)]
            if None not in fin:
                if L != R:
                    return S.false
                if L is False:
                    if lhs == -rhs:  # Eq(oo, -oo)
                        return S.false
                    return S.true
            elif None in fin and False in fin:
                return Relational.__new__(cls, lhs, rhs, **options)

            if all(isinstance(i, Expr) for i in (lhs, rhs)):
                # see if the difference evaluates
                dif = lhs - rhs
                z = dif.is_zero
                if z is not None:
                    if z is False and dif.is_commutative:  # issue 10728
                        return S.false
                    if z:
                        return S.true
                # evaluate numerically if possible
                n2 = _n2(lhs, rhs)
                if n2 is not None:
                    return _sympify(n2 == 0)
                # see if the ratio evaluates
                n, d = dif.as_numer_denom()
                rv = None
                if n.is_zero:
                    rv = d.is_nonzero
                elif n.is_finite:
                    if d.is_infinite:
                        rv = S.true
                    elif n.is_zero is False:
                        rv = d.is_infinite
                        if rv is None:
                            # if the condition that makes the denominator infinite does not
                            # make the original expression True then False can be returned
                            l, r = clear_coefficients(d, S.Infinity)
                            args = [_.subs(l, r) for _ in (lhs, rhs)]
                            if args != [lhs, rhs]:
                                rv = fuzzy_bool(Eq(*args))
                                if rv is True:
                                    rv = None
                elif any(a.is_infinite for a in Add.make_args(n)):  # (inf or nan)/x != 0
                    rv = S.false
                if rv is not None:
                    return _sympify(rv)

        return Relational.__new__(cls, lhs, rhs, **options)
Пример #8
0
def is_eq(lhs, rhs):
    """
    Fuzzy bool representing mathematical equality between lhs and rhs.

    Parameters
    ==========

    lhs: Expr
        The left-hand side of the expression, must be sympified.

    rhs: Expr
        The right-hand side of the expression, must be sympified.

    Returns
    =======

    True if lhs is equal to rhs, false is lhs is not equal to rhs, and
    None if the comparison between lhs and rhs is indeterminate.

    Explanation
    ===========

    This function is intended to give a relatively fast determination and deliberately does not attempt slow
    calculations that might help in obtaining a determination of True or False in more difficult cases.

    InEquality classes, such as Lt, Gt, etc. Use one of is_ge, is_le, etc.
    To implement comparisons with ``Gt(a, b)`` or ``a > b`` etc for an ``Expr`` subclass
    it is only necessary to define a dispatcher method for ``_eval_is_ge`` like

    >>> from sympy.core.relational import is_eq
    >>> from sympy.core.relational import is_neq
    >>> from sympy import S, Basic, Eq, sympify
    >>> from sympy.abc import x
    >>> from sympy.multipledispatch import dispatch
    >>> class MyBasic(Basic):
    ...     def __new__(cls, arg):
    ...         return Basic.__new__(cls, sympify(arg))
    ...     @property
    ...     def value(self):
    ...         return self.args[0]
    ...
    >>> @dispatch(MyBasic, MyBasic)
    ... def _eval_is_eq(a, b):
    ...     return is_eq(a.value, b.value)
    ...
    >>> a = MyBasic(1)
    >>> b = MyBasic(1)
    >>> a == b
    True
    >>> Eq(a, b)
    True
    >>> a != b
    False
    >>> is_eq(a, b)
    True

    Examples
    ========

    >>> is_eq(S(0), S(0))
    True
    >>> Eq(0, 0)
    True
    >>> is_neq(S(0), S(0))
    False
    >>> is_eq(S(0), S(2))
    False
    >>> Eq(0, 2)
    False
    >>> is_neq(S(0), S(2))
    True
    >>> is_eq(S(0), x)

    >>> Eq(S(0), x)
    Eq(0, x)

    """
    from sympy.core.add import Add
    from sympy.functions.elementary.complexes import arg
    from sympy.simplify.simplify import clear_coefficients
    from sympy.utilities.iterables import sift

    # here, _eval_Eq is only called for backwards compatibility
    # new code should use is_eq with multiple dispatch as
    # outlined in the docstring
    for side1, side2 in (lhs, rhs), (rhs, lhs):
        eval_func = getattr(side1, '_eval_Eq', None)
        if eval_func is not None:
            retval = eval_func(side2)
            if retval is not None:
                return retval

    retval = _eval_is_eq(lhs, rhs)
    if retval is not None:
        return retval

    if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
        retval = _eval_is_eq(rhs, lhs)
        if retval is not None:
            return retval

    # retval is still None, so go through the equality logic
    # If expressions have the same structure, they must be equal.
    if lhs == rhs:
        return True  # e.g. True == True
    elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
        return False  # True != False
    elif not (lhs.is_Symbol or rhs.is_Symbol) and (isinstance(lhs, Boolean) !=
                                                   isinstance(rhs, Boolean)):
        return False  # only Booleans can equal Booleans

    if lhs.is_infinite or rhs.is_infinite:
        if fuzzy_xor([lhs.is_infinite, rhs.is_infinite]):
            return False
        if fuzzy_xor([lhs.is_extended_real, rhs.is_extended_real]):
            return False
        if fuzzy_and([lhs.is_extended_real, rhs.is_extended_real]):
            return fuzzy_xor([
                lhs.is_extended_positive,
                fuzzy_not(rhs.is_extended_positive)
            ])

        # Try to split real/imaginary parts and equate them
        I = S.ImaginaryUnit

        def split_real_imag(expr):
            real_imag = lambda t: ('real' if t.is_extended_real else 'imag'
                                   if (I * t).is_extended_real else None)
            return sift(Add.make_args(expr), real_imag)

        lhs_ri = split_real_imag(lhs)
        if not lhs_ri[None]:
            rhs_ri = split_real_imag(rhs)
            if not rhs_ri[None]:
                eq_real = Eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']))
                eq_imag = Eq(I * Add(*lhs_ri['imag']),
                             I * Add(*rhs_ri['imag']))
                return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))

        # Compare e.g. zoo with 1+I*oo by comparing args
        arglhs = arg(lhs)
        argrhs = arg(rhs)
        # Guard against Eq(nan, nan) -> Falsesymp
        if not (arglhs == S.NaN and argrhs == S.NaN):
            return fuzzy_bool(Eq(arglhs, argrhs))

    if all(isinstance(i, Expr) for i in (lhs, rhs)):
        # see if the difference evaluates
        dif = lhs - rhs
        z = dif.is_zero
        if z is not None:
            if z is False and dif.is_commutative:  # issue 10728
                return False
            if z:
                return True

        n2 = _n2(lhs, rhs)
        if n2 is not None:
            return _sympify(n2 == 0)

        # see if the ratio evaluates
        n, d = dif.as_numer_denom()
        rv = None
        if n.is_zero:
            rv = d.is_nonzero
        elif n.is_finite:
            if d.is_infinite:
                rv = True
            elif n.is_zero is False:
                rv = d.is_infinite
                if rv is None:
                    # if the condition that makes the denominator
                    # infinite does not make the original expression
                    # True then False can be returned
                    l, r = clear_coefficients(d, S.Infinity)
                    args = [_.subs(l, r) for _ in (lhs, rhs)]
                    if args != [lhs, rhs]:
                        rv = fuzzy_bool(Eq(*args))
                        if rv is True:
                            rv = None
        elif any(a.is_infinite for a in Add.make_args(n)):
            # (inf or nan)/x != 0
            rv = False
        if rv is not None:
            return rv
Пример #9
0
    def __new__(cls, lhs, rhs=None, **options):
        from sympy.core.add import Add
        from sympy.core.containers import Tuple
        from sympy.core.logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
        from sympy.core.expr import _n2
        from sympy.functions.elementary.complexes import arg
        from sympy.simplify.simplify import clear_coefficients
        from sympy.utilities.iterables import sift

        if rhs is None:
            SymPyDeprecationWarning(feature="Eq(expr) with rhs default to 0",
                                    useinstead="Eq(expr, 0)",
                                    issue=16587,
                                    deprecated_since_version="1.5").warn()
            rhs = 0

        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_parameters.evaluate)

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true  # e.g. True == True
            elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
                return S.false  # True != False
            elif not (lhs.is_Symbol or rhs.is_Symbol) and (isinstance(
                    lhs, Boolean) != isinstance(rhs, Boolean)):
                return S.false  # only Booleans can equal Booleans

            if lhs.is_infinite or rhs.is_infinite:
                if fuzzy_xor([lhs.is_infinite, rhs.is_infinite]):
                    return S.false
                if fuzzy_xor([lhs.is_extended_real, rhs.is_extended_real]):
                    return S.false
                if fuzzy_and([lhs.is_extended_real, rhs.is_extended_real]):
                    r = fuzzy_xor([
                        lhs.is_extended_positive,
                        fuzzy_not(rhs.is_extended_positive)
                    ])
                    return S(r)

                # Try to split real/imaginary parts and equate them
                I = S.ImaginaryUnit

                def split_real_imag(expr):
                    real_imag = lambda t: ('real'
                                           if t.is_extended_real else 'imag' if
                                           (I * t).is_extended_real else None)
                    return sift(Add.make_args(expr), real_imag)

                lhs_ri = split_real_imag(lhs)
                if not lhs_ri[None]:
                    rhs_ri = split_real_imag(rhs)
                    if not rhs_ri[None]:
                        eq_real = Eq(Add(*lhs_ri['real']),
                                     Add(*rhs_ri['real']))
                        eq_imag = Eq(I * Add(*lhs_ri['imag']),
                                     I * Add(*rhs_ri['imag']))
                        res = fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
                        if res is not None:
                            return S(res)

                # Compare e.g. zoo with 1+I*oo by comparing args
                arglhs = arg(lhs)
                argrhs = arg(rhs)
                # Guard against Eq(nan, nan) -> False
                if not (arglhs == S.NaN and argrhs == S.NaN):
                    res = fuzzy_bool(Eq(arglhs, argrhs))
                    if res is not None:
                        return S(res)

                return Relational.__new__(cls, lhs, rhs, **options)

            if all(isinstance(i, Expr) for i in (lhs, rhs)):
                # see if the difference evaluates
                dif = lhs - rhs
                z = dif.is_zero
                if z is not None:
                    if z is False and dif.is_commutative:  # issue 10728
                        return S.false
                    if z:
                        return S.true
                # evaluate numerically if possible
                n2 = _n2(lhs, rhs)
                if n2 is not None:
                    return _sympify(n2 == 0)
                # see if the ratio evaluates
                n, d = dif.as_numer_denom()
                rv = None
                if n.is_zero:
                    rv = d.is_nonzero
                elif n.is_finite:
                    if d.is_infinite:
                        rv = S.true
                    elif n.is_zero is False:
                        rv = d.is_infinite
                        if rv is None:
                            # if the condition that makes the denominator
                            # infinite does not make the original expression
                            # True then False can be returned
                            l, r = clear_coefficients(d, S.Infinity)
                            args = [_.subs(l, r) for _ in (lhs, rhs)]
                            if args != [lhs, rhs]:
                                rv = fuzzy_bool(Eq(*args))
                                if rv is True:
                                    rv = None
                elif any(a.is_infinite for a in Add.make_args(n)):
                    # (inf or nan)/x != 0
                    rv = S.false
                if rv is not None:
                    return _sympify(rv)

        return Relational.__new__(cls, lhs, rhs, **options)