Пример #1
0
    def __init__(self, f, pbounds, random_state=None, verbose=2):
        """
        this is a comment
        """
        self._random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self._space = TargetSpace(f, pbounds, random_state)

        # queue
        self._queue = Queue()

        # Internal GP regressor
        self._gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=1e-6,
            normalize_y=True,
            n_restarts_optimizer=1,
            random_state=self._random_state,
            #optimizer=None
        )

        self._verbose = verbose
        super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)
    def __init__(self, f, pbounds, random_state=None, verbose=2, constraints=[]):
        """"""
        self._random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self._space = TargetSpace(f, pbounds, random_state)

        # queue
        self._queue = Queue()

        # Internal GP regressor
        self._gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=3e-3,
            normalize_y=True,
            n_restarts_optimizer=25,
            random_state=self._random_state,
        )

        self._verbose = verbose
        # Key constraints correspond to literal keyword names
        # array constraints correspond to point in array row
        self._key_constraints = constraints
        self._array_constraints = self.array_like_constraints()
        super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)
    def __init__(self,
                 f,
                 pbounds,
                 random_state=None,
                 verbose=2,
                 bounds_transformer=None):
        self._random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self._space = TargetSpace(f, pbounds, random_state)

        self._queue = Queue()

        # Internal GP regressor
        self._gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=1e-6,
            normalize_y=True,
            n_restarts_optimizer=5,
            random_state=self._random_state,
        )

        self._verbose = verbose
        self._bounds_transformer = bounds_transformer
        if self._bounds_transformer:
            try:
                self._bounds_transformer.initialize(self._space)
            except (AttributeError, TypeError):
                raise TypeError('The transformer must be an instance of '
                                'DomainTransformer')

        super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)
Пример #4
0
    def __init__(self, f, pbounds, random_state=None):
        self.pbounds = pbounds
        self.random_state = ensure_rng(random_state)
        self.gp = GaussianProcessRegressor(kernel=Matern(nu=2.5),
                                           n_restarts_optimizer=25,
                                           random_state=self.random_state)
        self.init_points = []
        self.space = TargetSpace(f, pbounds, random_state)

        self.x_init = []
        self.y_init = []
        self.initialized = False
        self._acqkw = {'n_warmup': 100000, 'n_iter': 250}
Пример #5
0
class BayesianOptimization(Observable):
    def __init__(self, f, pbounds, random_state=None, verbose=2):
        """
        this is a comment
        """
        self._random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self._space = TargetSpace(f, pbounds, random_state)

        # queue
        self._queue = Queue()

        # Internal GP regressor
        self._gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=1e-6,
            normalize_y=True,
            n_restarts_optimizer=1,
            random_state=self._random_state,
            #optimizer=None
        )

        self._verbose = verbose
        super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)

    @property
    def space(self):
        return self._space

    @property
    def max(self):
        return self._space.max()

    @property
    def res(self):
        return self._space.res()

    def get_lower_L(self):
        return self._gp.L

    def register(self, params, target):
        """Expect observation with known target"""
        self._space.register(params, target)
        self.dispatch(Events.OPTMIZATION_STEP)

    def probe(self, params, lazy=True):
        """Probe target of x"""
        x = 0
        if lazy:
            self._queue.add(params)
        else:
            x = self._space.probe(params)
            self.dispatch(Events.OPTMIZATION_STEP)
        return x

    def suggest(self, utility_function):
        """Most promissing point to probe next"""
        if len(self._space) == 0:
            return self._space.array_to_params(self._space.random_sample())

        # Sklearn's GP throws a large number of warnings at times, but
        # we don't really need to see them here.
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            self._gp.fit(self._space.params, self._space.target)

        # Finding argmax of the acquisition function.
        suggestion = acq_max(
            ac=utility_function.utility,
            gp=self._gp,
            y_max=self._space.target.max(),
            bounds=self._space.bounds,
            random_state=self._random_state
        )

        return self._space.array_to_params(suggestion)

    def _prime_queue(self, init_points):
        """Make sure there's something in the queue at the very beginning."""
        if self._queue.empty and self._space.empty:
            init_points = max(init_points, 1)

        for _ in range(init_points):
            self._queue.add(self._space.random_sample())

    def _prime_subscriptions(self):
        if not any([len(subs) for subs in self._events.values()]):
            _logger = _get_default_logger(self._verbose)
            self.subscribe(Events.OPTMIZATION_START, _logger)
            self.subscribe(Events.OPTMIZATION_STEP, _logger)
            self.subscribe(Events.OPTMIZATION_END, _logger)

    def maximize(self,
                 init_points=5,
                 n_iter=25,
                 acq='ucb',
                 kappa=2.576,
                 xi=0.01,
                 samples=None,
                 eps=0.5,
                 solution = 0,
                 **gp_params):
        """Mazimize your function"""
        self._prime_subscriptions()
        self.dispatch(Events.OPTMIZATION_START)
        self._prime_queue(init_points) #add random points to the queue
        self.set_gp_params(**gp_params)

        util = UtilityFunction(kind=acq, kappa=kappa, xi=xi)
        iteration = 0

        total_time = 0
        while not self._queue.empty or iteration < n_iter:
            try:
                x_probe = next(self._queue)
                # print(self._gp.kernel.theta)
            except StopIteration:
                tstart = time.time()
                x_probe = self.suggest(util)
                tend = time.time()
                total_time += (tend-tstart)
                iteration += 1
                # print(self._gp.kernel.theta)

            x = self.probe(x_probe, lazy=False)

            if(abs(x) -solution <eps):
               break

        # if samples != None :
        #     with open("samples.pickle", "rb") as f:
        #     epochs, wd, lr, m, acc = pickle.load(f)
        #     for _ in range(len(epochs)):
        #         self._space.register_seeds(x, params)
        #         self.dispatch(Events.OPTMIZATION_STEP)

        self.dispatch(Events.OPTMIZATION_END)

    def set_bounds(self, new_bounds):
        """
        A method that allows changing the lower and upper searching bounds

        Parameters
        ----------
        new_bounds : dict
            A dictionary with the parameter name and its new bounds
        """
        self._space.set_bounds(new_bounds)

    def set_gp_params(self, **params):
        self._gp.set_params(**params)
Пример #6
0
class BayesianOptimization(object):
    def __init__(self, f, pbounds, random_state=None):
        self.pbounds = pbounds
        self.random_state = ensure_rng(random_state)
        self.gp = GaussianProcessRegressor(kernel=Matern(nu=2.5),
                                           n_restarts_optimizer=25,
                                           random_state=self.random_state)
        self.init_points = []
        self.space = TargetSpace(f, pbounds, random_state)

        self.x_init = []
        self.y_init = []
        self.initialized = False
        self._acqkw = {'n_warmup': 100000, 'n_iter': 250}

    def init(self, init_points):
        #init points
        rand_points = self.space.random_points(init_points)
        self.init_points.extend(rand_points)

        #evaluate target function at all init points
        for x in self.init_points:
            y = self._observe_point(x)

        #add the points to the obsevations
        if self.x_init:
            x_init = np.vstack(self.x_init)
            y_init = np.hstack(self.y_init)
            for x, y in zip(x_init, y_init):
                self.space.add_observation(x, y)
        self.initialized = True

    def _observe_point(self, x):
        y = self.space.observe_point(x)
        return y

    def initialize(self, points_dict):
        self.y_init.extend(points_dict['target'])
        for i in range(len(points_dict['target'])):
            all_points = []
            for key in self.space.keys:
                all_points.append(points_dict[key][i])
            self.x_init_append(all_points)

    def maximize(self,
                 init_points=5,
                 n_iter=25,
                 acq='ucb',
                 kappa=2.576,
                 xi=0.0,
                 **gp_params):

        #get acquisition function
        self.util = AcquisitionFunction(kind=acq, kappa=kappa, xi=xi)

        #initialize
        if not self.initialized:
            self.init(init_points)
        y_max = self.space.Y.max()

        #set gp parameters
        self.gp.set_params(**gp_params)

        #gaussian process fit
        self.gp.fit(self.space.X, self.space.Y)

        #find argmax of the acquisition function
        x_max = acq_max(ac=self.util.acqf,
                        gp=self.gp,
                        y_max=y_max,
                        bounds=self.space.bounds,
                        random_state=self.random_state,
                        **self._acqkw)

        #Iterative process
        for i in range(n_iter):
            #Append most recently generated values to X and Y arrays
            y = self.space.observe_point(x_max)
            #updatging the Gp
            self.gp.fit(self.space.X, self.space.Y)

            #update maximum value to search for next probe point
            if self.space.Y[-1] > y_max:
                y_max = self.space.Y[-1]
            #Maximum acquasition function to find next probing point
            x_max = acq_max(ac=self.util.acqf,
                            gp=self.gp,
                            y_max=y_max,
                            bounds=self.space.bounds,
                            random_state=self.random_state,
                            **self._acqkw)

    @property
    def X(self):
        return self.space.X

    @property
    def Y(self):
        return self.space.Y
class BayesianOptimization(Observable):
    def __init__(self, f, pbounds, random_state=None, verbose=2, constraints=[]):
        """"""
        self._random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self._space = TargetSpace(f, pbounds, random_state)

        # queue
        self._queue = Queue()

        # Internal GP regressor
        self._gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=3e-3,
            normalize_y=True,
            n_restarts_optimizer=25,
            random_state=self._random_state,
        )

        self._verbose = verbose
        # Key constraints correspond to literal keyword names
        # array constraints correspond to point in array row
        self._key_constraints = constraints
        self._array_constraints = self.array_like_constraints()
        super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)

    @property
    def space(self):
        return self._space

    @property
    def max(self):
        return self._space.max()

    @property
    def res(self):
        return self._space.res()

    @property
    def constraints(self):
        return self._array_constraints

    @property
    def verbose(self):
        return self._verbose

    def register(self, params, target):
        """Expect observation with known target"""
        self._space.register(params, target)
        self.dispatch(Events.OPTMIZATION_STEP)

    def probe(self, params, lazy=True):
        """Probe target of x"""
        if isinstance(params, list):
            for param in params:
                if lazy:
                    self._queue.add(param)
                else:
                    self._space.probe(param)
                    self.dispatch(Events.OPTMIZATION_STEP)
        else:
            if lazy:
                self._queue.add(params)
            else:
                self._space.probe(params)
                self.dispatch(Events.OPTMIZATION_STEP)

    def suggest(self, utility_function):
        """Most promissing point to probe next"""
        if len(self._space) == 0:
            return self._space.array_to_params(self._space.random_sample())

        # Sklearn's GP throws a large number of warnings at times, but
        # we don't really need to see them here.
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            self._gp.fit(self._space.params, self._space.target)

        # Finding argmax of the acquisition function.
        suggestion = acq_max(
            ac=utility_function.utility,
            gp=self._gp,
            y_max=self._space.target.max(),
            bounds=self._space.bounds,
            random_state=self._random_state
        )

        return self._space.array_to_params(suggestion)

    def reset_rng(self, random_state=None):
        self._random_state = ensure_rng(random_state)

    def _prime_queue(self, init_points):
        """Make sure there's something in the queue at the very beginning."""
        if self._queue.empty and self._space.empty:
            init_points = max(init_points, 1)

        for _ in range(init_points):
            self._queue.add(self._space.random_sample())

    def _prime_subscriptions(self):
        if not any([len(subs) for subs in self._events.values()]):
            _logger = _get_default_logger(self._verbose)
            self.subscribe(Events.OPTMIZATION_START, _logger)
            self.subscribe(Events.OPTMIZATION_STEP, _logger)
            self.subscribe(Events.OPTMIZATION_END, _logger)

    def maximize(self,
                 init_points=5,
                 n_iter=25,
                 acq='ucb',
                 kappa=10,
                 xi=0,
                 **gp_params):
        """Mazimize your function"""
        self._prime_subscriptions()
        self.dispatch(Events.OPTMIZATION_START)
        self._prime_queue(init_points)
        self.set_gp_params(**gp_params)

        util = UtilityFunction(kind=acq, kappa=kappa, xi=xi)
        iteration = 0
        while not self._queue.empty or iteration < n_iter:
            try:
                x_probe = next(self._queue)
            except StopIteration:
                x_probe = self.suggest(util)
                iteration += 1

            self.probe(x_probe, lazy=False)

        self.dispatch(Events.OPTMIZATION_END)

    def set_bounds(self, new_bounds):
        """
        A method that allows changing the lower and upper searching bounds

        Parameters
        ----------
        new_bounds : dict
            A dictionary with the parameter name and its new bounds
        """
        self._space.set_bounds(new_bounds)

    def set_gp_params(self, **params):
        self._gp.set_params(**params)

    def array_like_constraints(self):
        '''
        Takes list of logical constraints in terms of space keys,
        and replaces the constraints in terms of array indicies.
        This allows direct evaluation in the acquisition function.
        Parameters
        ----------
        constraints: list of string constraints
        '''
        keys = self.space.keys
        array_like = []
        for constraint in self._key_constraints:
            tmp = constraint
            for idx, key in enumerate(keys):
                # tmp = tmp.replace(key,'x[0][{}]'.format(idx))
                tmp = tmp.replace(key, 'x[{}]'.format(idx))
            array_like.append(tmp)
        return array_like

    def get_constraint_dict(self):
        '''
        Develops inequality constraints ONLY. (>=0)
        '''
        dicts = []
        funcs = []
        for idx, constraint in enumerate(self.constraints):
            st = "def f_{}(x): return pd.eval({})\nfuncs.append(f_{})".format(idx, constraint, idx)
            exec(st)
            dicts.append({'type': 'ineq',
                          'fun': funcs[idx]})
        return dicts

    def output_space(self, path):
        """
        Outputs complete space as csv file.
        Simple function for testing
        Parameters
        ----------
        path

        Returns
        -------

        """
        df = pd.DataFrame(data=self.space.params, columns=self.space.keys)
        df['Target'] = self.space.target
        df.to_csv(path)
class BayesianOptimization(Observable):
    """
    This class takes the function to optimize as well as the parameters bounds
    in order to find which values for the parameters yield the maximum value
    using bayesian optimization.

    Parameters
    ----------
    f: function
        Function to be maximized.

    pbounds: dict
        Dictionary with parameters names as keys and a tuple with minimum
        and maximum values.

    random_state: int or numpy.random.RandomState, optional(default=None)
        If the value is an integer, it is used as the seed for creating a
        numpy.random.RandomState. Otherwise the random state provieded it is used.
        When set to None, an unseeded random state is generated.

    verbose: int, optional(default=2)
        The level of verbosity.

    bounds_transformer: DomainTransformer, optional(default=None)
        If provided, the transformation is applied to the bounds.

    Methods
    -------
    probe()
        Evaluates the function on the given points.
        Can be used to guide the optimizer.

    maximize()
        Tries to find the parameters that yield the maximum value for the
        given function.

    set_bounds()
        Allows changing the lower and upper searching bounds
    """
    def __init__(self,
                 f,
                 pbounds,
                 random_state=None,
                 verbose=2,
                 bounds_transformer=None):
        self._random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self._space = TargetSpace(f, pbounds, random_state)

        self._queue = Queue()

        # Internal GP regressor
        self._gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=1e-6,
            normalize_y=True,
            n_restarts_optimizer=5,
            random_state=self._random_state,
        )

        self._verbose = verbose
        self._bounds_transformer = bounds_transformer
        if self._bounds_transformer:
            try:
                self._bounds_transformer.initialize(self._space)
            except (AttributeError, TypeError):
                raise TypeError('The transformer must be an instance of '
                                'DomainTransformer')

        super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)

    @property
    def space(self):
        return self._space

    @property
    def max(self):
        return self._space.max()

    @property
    def res(self):
        return self._space.res()

    def register(self, params, target):
        """Expect observation with known target"""
        self._space.register(params, target)
        self.dispatch(Events.OPTIMIZATION_STEP)

    def probe(self, params, lazy=True):
        """
        Evaluates the function on the given points. Useful to guide the optimizer.

        Parameters
        ----------
        params: dict or list
            The parameters where the optimizer will evaluate the function.

        lazy: bool, optional(default=True)
            If True, the optimizer will evaluate the points when calling
            maximize(). Otherwise it will evaluate it at the moment.
        """
        if lazy:
            self._queue.add(params)
        else:
            self._space.probe(params)
            self.dispatch(Events.OPTIMIZATION_STEP)

    def suggest(self, utility_function):
        """Most promising point to probe next"""
        if len(self._space) == 0:
            return self._space.array_to_params(self._space.random_sample())

        # Sklearn's GP throws a large number of warnings at times, but
        # we don't really need to see them here.
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            self._gp.fit(self._space.params, self._space.target)

        # Finding argmax of the acquisition function.
        suggestion = acq_max(ac=utility_function.utility,
                             gp=self._gp,
                             y_max=self._space.target.max(),
                             bounds=self._space.bounds,
                             random_state=self._random_state)

        return self._space.array_to_params(suggestion)

    def _prime_queue(self, init_points):
        """Make sure there's something in the queue at the very beginning."""
        if self._queue.empty and self._space.empty:
            init_points = max(init_points, 1)

        for _ in range(init_points):
            self._queue.add(self._space.random_sample())

    def _prime_subscriptions(self):
        if not any([len(subs) for subs in self._events.values()]):
            _logger = _get_default_logger(self._verbose)
            self.subscribe(Events.OPTIMIZATION_START, _logger)
            self.subscribe(Events.OPTIMIZATION_STEP, _logger)
            self.subscribe(Events.OPTIMIZATION_END, _logger)

    def maximize(self,
                 init_points=5,
                 n_iter=25,
                 acq='ucb',
                 kappa=2.576,
                 kappa_decay=1,
                 kappa_decay_delay=0,
                 xi=0.0,
                 **gp_params):
        """
        Probes the target space to find the parameters that yield the maximum
        value for the given function.

        Parameters
        ----------
        init_points : int, optional(default=5)
            Number of iterations before the explorations starts the exploration
            for the maximum.

        n_iter: int, optional(default=25)
            Number of iterations where the method attempts to find the maximum
            value.

        acq: {'ucb', 'ei', 'poi'}
            The acquisition method used.
                * 'ucb' stands for the Upper Confidence Bounds method
                * 'ei' is the Expected Improvement method
                * 'poi' is the Probability Of Improvement criterion.

        kappa: float, optional(default=2.576)
            Parameter to indicate how closed are the next parameters sampled.
                Higher value = favors spaces that are least explored.
                Lower value = favors spaces where the regression function is the
                highest.

        kappa_decay: float, optional(default=1)
            `kappa` is multiplied by this factor every iteration.

        kappa_decay_delay: int, optional(default=0)
            Number of iterations that must have passed before applying the decay
            to `kappa`.

        xi: float, optional(default=0.0)
            [unused]
        """
        self._prime_subscriptions()
        self.dispatch(Events.OPTIMIZATION_START)
        self._prime_queue(init_points)
        self.set_gp_params(**gp_params)

        util = UtilityFunction(kind=acq,
                               kappa=kappa,
                               xi=xi,
                               kappa_decay=kappa_decay,
                               kappa_decay_delay=kappa_decay_delay)
        iteration = 0
        while not self._queue.empty or iteration < n_iter:
            try:
                x_probe = next(self._queue)
            except StopIteration:
                util.update_params()
                x_probe = self.suggest(util)
                iteration += 1

            self.probe(x_probe, lazy=False)

            if self._bounds_transformer:
                self.set_bounds(self._bounds_transformer.transform(
                    self._space))

        self.dispatch(Events.OPTIMIZATION_END)

    def set_bounds(self, new_bounds):
        """
        A method that allows changing the lower and upper searching bounds

        Parameters
        ----------
        new_bounds : dict
            A dictionary with the parameter name and its new bounds
        """
        self._space.set_bounds(new_bounds)

    def set_gp_params(self, **params):
        """Set parameters to the internal Gaussian Process Regressor"""
        self._gp.set_params(**params)