Пример #1
0
def main(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    wandb.init(project='meta-analogy')
    # print(args.use_cuda)
    # print(f'CUDA IS AVAILABLE: {torch.cuda.is_available()}')
    # assert args.use_cuda
    # assert torch.cuda.is_available()

    logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
    device = torch.device('cuda' if args.use_cuda
                          and torch.cuda.is_available() else 'cpu')

    if (args.output_folder is not None):
        if not os.path.exists(args.output_folder):
            os.makedirs(args.output_folder)
            logging.debug('Creating folder `{0}`'.format(args.output_folder))

        folder = os.path.join(args.output_folder,
                              time.strftime('%Y-%m-%d_%H%M%S')+args.model_type)
        os.makedirs(folder)
        logging.debug('Creating folder `{0}`'.format(folder))

        # args.folder = os.path.abspath(args.folder)
        args.model_path = os.path.abspath(os.path.join(folder, 'model.th'))
        # Save the configuration in a config.json file
        with open(os.path.join(folder, 'config.json'), 'w') as f:
            json.dump(vars(args), f, indent=2)
        logging.info('Saving configuration file in `{0}`'.format(
                     os.path.abspath(os.path.join(folder, 'config.json'))))

    dataset_transform = ClassSplitter(shuffle=True,
                                      num_train_per_class=args.num_shots,
                                      num_test_per_class=args.num_shots_test)

    # meta_train_dataset = Analogy(num_samples_per_task=args.batch_size,
    #                         dataset_transform=dataset_transform)
    # meta_val_dataset = Analogy(num_samples_per_task=args.batch_size,
    #                         dataset_transform=dataset_transform)
    meta_train_dataset = Analogy(dataset_transform=dataset_transform)
    meta_val_dataset = Analogy(dataset_transform=dataset_transform)

    meta_train_dataloader = BatchMetaDataLoader(meta_train_dataset,
                                                batch_size=args.batch_size,
                                                shuffle=True,
                                                num_workers=args.num_workers,
                                                pin_memory=True)
    meta_val_dataloader = BatchMetaDataLoader(meta_val_dataset,
                                              batch_size=args.batch_size,
                                              shuffle=True,
                                              num_workers=args.num_workers,
                                              pin_memory=True)

    if args.model_type == 'linear':
        model = MetaLinear(in_features=300, out_features=300)
    elif args.model_type == 'mlp1':
        model = MetaMLPModel(in_features=300, out_features=300, hidden_sizes=[500])
    elif args.model_type == 'mlp2':
        model = MetaMLPModel(in_features=300, out_features=300, hidden_sizes=[500, 500])
    else:
        raise ValueError('unrecognized model type')

    loss_function = nn.MSELoss()
    wandb.watch(model)

    meta_optimizer = torch.optim.Adam(model.parameters(), lr=args.meta_lr)
    metalearner = ModelAgnosticMetaLearning(model,
                                            meta_optimizer,
                                            first_order=args.first_order,
                                            num_adaptation_steps=args.num_steps,
                                            step_size=args.step_size,
                                            loss_function=loss_function,
                                            device=device)

    best_value = None

    # Training loop
    epoch_desc = 'Epoch {{0: <{0}d}}'.format(1 + int(math.log10(args.num_epochs)))
    for epoch in range(args.num_epochs):
        metalearner.train(meta_train_dataloader,
                          max_batches=args.num_batches,
                          verbose=args.verbose,
                          desc='Training',
                          leave=False)
        results = metalearner.evaluate(meta_val_dataloader,
                                       max_batches=args.num_batches,
                                       verbose=args.verbose,
                                       desc=epoch_desc.format(epoch + 1))
        wandb.log({'results' : results})

        # Save best model
        if 'accuracies_after' in results:
            if (best_value is None) or (best_value < results['accuracies_after']):
                best_value = results['accuracies_after']
                save_model = True
        elif (best_value is None) or (best_value > results['mean_outer_loss']):
            best_value = results['mean_outer_loss']
            save_model = True
        else:
            save_model = False

        if save_model and (args.output_folder is not None):
            with open(args.model_path, 'wb') as f:
                torch.save(model.state_dict(), f)
                torch.save(model.state_dict(), os.path.join(wandb.run.dir, 'model.pt'))

    if hasattr(meta_train_dataset, 'close'):
        meta_train_dataset.close()
        meta_val_dataset.close()
Пример #2
0
    def __init__(self,
                 input_shape,
                 Nhid=[1],
                 Mhid=[128],
                 out_channels=1,
                 kernel_size=[7],
                 stride=[1],
                 pool_size=[2],
                 alpha=[.9],
                 beta=[.85],
                 alpharp=[.65],
                 dropout=[0.5],
                 num_conv_layers=2,
                 num_mlp_layers=1,
                 deltat=1000,
                 lc_ampl=.5,
                 lif_layer_type = LIFLayer,
                 method='rtrl',
                 with_output_layer = True):

        self.with_output_layer = with_output_layer
        if with_output_layer:
            Mhid += [out_channels]
            num_mlp_layers += 1
        self.num_layers = num_layers = num_conv_layers + num_mlp_layers
        # If only one value provided, then it is duplicated for each layer
        if len(kernel_size) == 1:   kernel_size = kernel_size * num_conv_layers
        if stride is None: stride=[1]
        if len(stride) == 1:        stride = stride * num_conv_layers
        if pool_size is None: pool_size = [1]
        if len(pool_size) == 1: pool_size = pool_size * num_conv_layers
        if len(alpha) == 1:         alpha = alpha * num_layers
        if len(alpharp) == 1:       alpharp = alpharp * num_layers
        if len(beta) == 1:          beta = beta * num_layers
        if len(dropout) == 1:       self.dropout = dropout = dropout * num_layers
        if Nhid is None:          self.Nhid = Nhid = []
        if Mhid is None:          self.Mhid = Mhid = []


        super(MetaLenetDECOLLE, self).__init__()

        # Computing padding to preserve feature size
        padding = (np.array(kernel_size) - 1) // 2  # TODO try to remove padding



        # THe following lists need to be nn.ModuleList in order for pytorch to properly load and save the state_dict
        self.pool_layers = nn.ModuleList()
        self.dropout_layers = nn.ModuleList()
        self.input_shape = input_shape
        Nhid = [input_shape[0]] + Nhid
        self.num_conv_layers = num_conv_layers
        self.num_mlp_layers = num_mlp_layers

        feature_height = self.input_shape[1]
        feature_width = self.input_shape[2]

        for i in range(self.num_conv_layers):
            feature_height, feature_width = get_output_shape(
                [feature_height, feature_width], 
                kernel_size = kernel_size[i],
                stride = stride[i],
                padding = padding[i],
                dilation = 1)
            feature_height //= pool_size[i]
            feature_width //= pool_size[i]
            base_layer = MetaConv2d(Nhid[i], Nhid[i + 1], kernel_size[i], stride[i], padding[i])
            layer = lif_layer_type(base_layer,
                             alpha=alpha[i],
                             beta=beta[i],
                             alpharp=alpharp[i],
                             deltat=deltat,
                             do_detach= True if method == 'rtrl' else False)
            pool = nn.MaxPool2d(kernel_size=pool_size[i])
            readout = MetaLinear(int(feature_height * feature_width * Nhid[i + 1]), out_channels)

            # Readout layer has random fixed weights
            for param in readout.parameters():
                param.requires_grad = False
            self.reset_lc_parameters(readout, lc_ampl)

            dropout_layer = nn.Dropout(dropout[i])

            self.LIF_layers.append(layer)
            self.pool_layers.append(pool)
            self.readout_layers.append(readout)
            self.dropout_layers.append(dropout_layer)

        mlp_in = int(feature_height * feature_width * Nhid[-1])
        Mhid = [mlp_in] + Mhid
        for i in range(num_mlp_layers):
            base_layer = MetaLinear(Mhid[i], Mhid[i+1])
            layer = lif_layer_type(base_layer,
                             alpha=alpha[i],
                             beta=beta[i],
                             alpharp=alpharp[i],
                             deltat=deltat,
                             do_detach= True if method == 'rtrl' else False)
            
            if self.with_output_layer and i+1==num_mlp_layers:
                readout = nn.Identity()
                dropout_layer = nn.Identity()
            else:
                readout = MetaLinear(Mhid[i+1], out_channels)
                # Readout layer has random fixed weights
                for param in readout.parameters():
                    param.requires_grad = False
                self.reset_lc_parameters(readout, lc_ampl)
                dropout_layer = nn.Dropout(dropout[self.num_conv_layers+i])

            self.LIF_layers.append(layer)
            self.pool_layers.append(nn.Sequential())
            self.readout_layers.append(readout)
            self.dropout_layers.append(dropout_layer)