Пример #1
0
    def launch(self, data_file, dataset_name, connectivity):
        """
        Execute import operations:
        """
        try:
            data = self.read_matlab_data(data_file, dataset_name)
            measurement_count, node_count = data.shape

            if node_count != connectivity.number_of_regions:
                raise LaunchException(
                    'The measurements are for %s nodes but the selected connectivity'
                    ' contains %s nodes' %
                    (node_count, connectivity.number_of_regions))

            measures = []
            for i in xrange(measurement_count):
                measure = ConnectivityMeasure(storage_path=self.storage_path,
                                              connectivity=connectivity,
                                              array_data=data[i, :])
                measure.user_tag_2 = "nr.-%d" % (i + 1)
                measure.user_tag_3 = "conn_%d" % node_count
                measures.append(measure)
            return measures
        except ParseException, excep:
            logger = get_logger(__name__)
            logger.exception(excep)
            raise LaunchException(excep)
Пример #2
0
    def launch(self, time_series, sw, sp):
        """
           Launch algorithm and build results.

           :param time_series: the input time-series for which correlation coefficient should be computed
           :param sw: length of the sliding window
           :param sp: spanning time: distance between two consecutive sliding window
           :returns: the fcd matrix for the given time-series, with that sw and that sp
           :rtype: `Fcd`,`ConnectivityMeasure` 
        """
        
        result = [] # where fcd, fcd_segmented (eventually), and connectivity measures will be stored

        [fcd, fcd_segmented, eigvect_dict, eigval_dict, Connectivity] = self.algorithm.evaluate()
    
        # Create a Fcd dataType object.
        result_fcd = Fcd(storage_path=self.storage_path, source=time_series, sw=sw, sp=sp)
        result_fcd.array_data = fcd
        result.append(result_fcd)

        if np.amax(fcd_segmented)==1.1 :
            result_fcd_segmented = Fcd(storage_path=self.storage_path, source=time_series, sw=sw, sp=sp)
            result_fcd_segmented.array_data = fcd_segmented
            result.append(result_fcd_segmented)
        for mode in eigvect_dict.keys():
            for var in eigvect_dict[mode].keys():
                for ep in eigvect_dict[mode][var].keys():
                    for eig in range(3):
                        result_eig = ConnectivityMeasure(storage_path=self.storage_path)
                        result_eig.connectivity = Connectivity
                        result_eig.array_data = eigvect_dict[mode][var][ep][eig]
                        result_eig.title = "Epoch # %d, \n eigenvalue = %s,\n variable = %s,\n mode = %s." % (ep,eigval_dict[mode][var][ep][eig], var, mode)
                        result.append(result_eig)
        return result
    def launch(self, view_model):
        # type: (ConnectivityMeasureImporterModel) -> [ConnectivityMeasureIndex]
        """
        Execute import operations:
        """
        try:
            data = self.read_matlab_data(view_model.data_file, view_model.dataset_name)
            measurement_count, node_count = data.shape
            connectivity = self.load_traited_by_gid(view_model.connectivity)

            if node_count != connectivity.number_of_regions:
                raise LaunchException('The measurements are for %s nodes but the selected connectivity'
                                      ' contains %s nodes' % (node_count, connectivity.number_of_regions))

            measures = []
            self.generic_attributes.user_tag_2 = "conn_%d" % node_count

            for i in range(measurement_count):
                cm_data = data[i, :]

                measure = ConnectivityMeasure()
                measure.array_data = cm_data
                measure.connectivity = connectivity
                measure.title = "Measure %d for Connectivity with %d nodes." % ((i + 1), node_count)

                cm_idx = h5.store_complete(measure, self.storage_path)
                measures.append(cm_idx)
            return measures

        except ParseException as excep:
            logger = get_logger(__name__)
            logger.exception(excep)
            raise LaunchException(excep)
Пример #4
0
    def launch(self, view_model):
        # type: (FCDAdapterModel) -> [FcdIndex, ConnectivityMeasureIndex]
        """
        Launch algorithm and build results.
        :param view_model: the ViewModel keeping the algorithm inputs
        :return: the fcd index for the computed fcd matrix on the given time-series, with that sw and that sp
        """
        with h5.h5_file_for_index(self.input_time_series_index) as ts_h5:
            [fcd, fcd_segmented, eigvect_dict,
             eigval_dict] = self._compute_fcd_matrix(ts_h5)
            connectivity_gid = ts_h5.connectivity.load()
            connectivity = self.load_traited_by_gid(connectivity_gid)

        result = [
        ]  # list to store: fcd index, fcd_segmented index (eventually), and connectivity measure indexes

        # Create an index for the computed fcd.
        fcd_index = FcdIndex()
        fcd_h5_path = h5.path_for(self.storage_path, FcdH5, fcd_index.gid)
        with FcdH5(fcd_h5_path) as fcd_h5:
            self._populate_fcd_h5(fcd_h5, fcd, fcd_index.gid,
                                  self.input_time_series_index.gid,
                                  view_model.sw, view_model.sp)
            self._populate_fcd_index(fcd_index,
                                     self.input_time_series_index.gid, fcd_h5)
        result.append(fcd_index)

        if np.amax(fcd_segmented) == 1.1:
            result_fcd_segmented_index = FcdIndex()
            result_fcd_segmented_h5_path = h5.path_for(
                self.storage_path, FcdH5, result_fcd_segmented_index.gid)
            with FcdH5(
                    result_fcd_segmented_h5_path) as result_fcd_segmented_h5:
                self._populate_fcd_h5(result_fcd_segmented_h5, fcd_segmented,
                                      result_fcd_segmented_index.gid,
                                      self.input_time_series_index.gid,
                                      view_model.sw, view_model.sp)
                self._populate_fcd_index(result_fcd_segmented_index,
                                         self.input_time_series_index.gid,
                                         result_fcd_segmented_h5)
            result.append(result_fcd_segmented_index)

        for mode in eigvect_dict.keys():
            for var in eigvect_dict[mode].keys():
                for ep in eigvect_dict[mode][var].keys():
                    for eig in range(3):
                        cm_data = eigvect_dict[mode][var][ep][eig]
                        measure = ConnectivityMeasure()
                        measure.connectivity = connectivity
                        measure.array_data = cm_data
                        measure.title = "Epoch # %d, eigenvalue = %s, variable = %s, " \
                                        "mode = %s." % (ep, eigval_dict[mode][var][ep][eig], var, mode)
                        cm_index = h5.store_complete(measure,
                                                     self.storage_path)
                        result.append(cm_index)
        return result
Пример #5
0
 def create_connectivity_measure(self, connectivity):
     """
     :returns: persisted entity ConnectivityMeasure
     """
     operation, _, storage_path = self.__create_operation()
     conn_measure = ConnectivityMeasure(storage_path=storage_path)
     conn_measure.connectivity = connectivity
     adapter_instance = StoreAdapter([conn_measure])
     OperationService().initiate_prelaunch(operation, adapter_instance, {})
     return conn_measure
Пример #6
0
 def create_connectivity_measure(self, connectivity):
     """
     :returns: persisted entity ConnectivityMeasure
     """
     operation, _, storage_path = self.__create_operation()
     conn_measure = ConnectivityMeasure(storage_path=storage_path)
     conn_measure.connectivity = connectivity
     adapter_instance = StoreAdapter([conn_measure])
     OperationService().initiate_prelaunch(operation, adapter_instance, {})
     return conn_measure
Пример #7
0
 def test_happy_flow(self):
     self.assertEqual(
         0,
         TestFactory.get_entity_count(self.test_project,
                                      ConnectivityMeasure()))
     self._import('mantini_networks.mat')
     self.assertEqual(
         6,
         TestFactory.get_entity_count(self.test_project,
                                      ConnectivityMeasure()))
        def _create_measure(conn, op, op_dir, project_id):
            conn_measure = ConnectivityMeasure()
            conn_measure.connectivity = h5.load_from_index(conn)
            conn_measure.array_data = numpy.array(conn.number_of_regions)

            conn_measure_db = h5.store_complete(conn_measure, op_dir)
            conn_measure_db.fk_from_operation = op.id
            dao.store_entity(conn_measure_db)

            count = dao.count_datatypes(project_id, DataTypeMatrix)
            return count
Пример #9
0
    def launch(self, time_series, sw, sp):
        """
           Launch algorithm and build results.

           :param time_series: the input time-series for which correlation coefficient should be computed
           :param sw: length of the sliding window
           :param sp: spanning time: distance between two consecutive sliding window
           :returns: the fcd matrix for the given time-series, with that sw and that sp
           :rtype: `Fcd`,`ConnectivityMeasure` 
        """

        result = [
        ]  # where fcd, fcd_segmented (eventually), and connectivity measures will be stored

        [fcd, fcd_segmented, eigvect_dict, eigval_dict,
         Connectivity] = self.algorithm.evaluate()

        # Create a Fcd dataType object.
        result_fcd = Fcd(storage_path=self.storage_path,
                         source=time_series,
                         sw=sw,
                         sp=sp)
        result_fcd.array_data = fcd
        result.append(result_fcd)

        if np.amax(fcd_segmented) == 1.1:
            result_fcd_segmented = Fcd(storage_path=self.storage_path,
                                       source=time_series,
                                       sw=sw,
                                       sp=sp)
            result_fcd_segmented.array_data = fcd_segmented
            result.append(result_fcd_segmented)
        for mode in eigvect_dict.keys():
            for var in eigvect_dict[mode].keys():
                for ep in eigvect_dict[mode][var].keys():
                    for eig in range(3):
                        result_eig = ConnectivityMeasure(
                            storage_path=self.storage_path)
                        result_eig.connectivity = Connectivity
                        result_eig.array_data = eigvect_dict[mode][var][ep][
                            eig]
                        result_eig.title = "Epoch # %d, \n " \
                                           "eigenvalue = %s,\n " \
                                           "variable = %s,\n " \
                                           "mode = %s." % (ep, eigval_dict[mode][var][ep][eig], var, mode)
                        result.append(result_eig)
        return result
Пример #10
0
 def build_connectivity_measure(self, result, key, connectivity, title="", label_x="", label_y=""):
     measure = ConnectivityMeasure()
     measure.array_data = result[key]
     measure.connectivity = connectivity
     measure.title = title
     measure.label_x = label_x
     measure.label_y = label_y
     return h5.store_complete(measure, self.storage_path)
Пример #11
0
 def build_connectivity_measure(self, result, key, connectivity, title="", label_x="", label_y=""):
     measure = ConnectivityMeasure(storage_path=self.storage_path)
     measure.array_data = result[key]
     measure.connectivity = connectivity
     measure.title = title
     measure.label_x = label_x
     measure.label_y = label_y
     return measure
    def launch(self, data_file, dataset_name, connectivity):
        """
        Execute import operations:
        """
        try:
            data = self.read_matlab_data(data_file, dataset_name)
            measurement_count, node_count = data.shape

            if node_count != connectivity.number_of_regions:
                raise LaunchException('The measurements are for %s nodes but the selected connectivity'
                                      ' contains %s nodes' % (node_count, connectivity.number_of_regions))

            measures = []
            for i in xrange(measurement_count):
                measure = ConnectivityMeasure(storage_path=self.storage_path,
                                              connectivity=connectivity, array_data=data[i, :])
                measure.user_tag_2 = "nr.-%d" % (i + 1)
                measure.user_tag_3 = "conn_%d" % node_count
                measures.append(measure)
            return measures
        except ParseException, excep:
            logger = get_logger(__name__)
            logger.exception(excep)
            raise LaunchException(excep)
Пример #13
0
 def build_connectivity_measure(self,
                                result,
                                key,
                                connectivity,
                                title="",
                                label_x="",
                                label_y=""):
     # TODO H5
     measure = ConnectivityMeasure()
     measure.array_data = result[key]
     measure.connectivity = connectivity
     measure.title = title
     measure.label_x = label_x
     measure.label_y = label_y
     return measure
Пример #14
0
 def test_happy_flow(self):
     assert 0 == TestFactory.get_entity_count(self.test_project,
                                              ConnectivityMeasure())
     self._import('mantini_networks.mat')
     assert 6 == TestFactory.get_entity_count(self.test_project,
                                              ConnectivityMeasure())