Пример #1
0
    def set_data(self, data, ignore_feat=True):
        """
        :param data: a TxKxV tensor of event-feature map where T- time; K- process id; V- corresponding feature vector
        :input feature: V+1 features, [V features, 1 bias], bias- denotes recency
        """
        assert isinstance(
            data, np.ndarray
        ) and data.ndim == 3, "data needs to be a TxKxV tensor of event features"
        self.update_K(data.shape[1])
        self.F = data.shape[2] - 1
        # calculate linear mark function: F expected to be KxKxTxF tensor
        if self.F < 1 or ignore_feat:
            f_mat = None
            self.F = 0
        else:
            f_mat = data[:, :, :-1]
        if self.F > 0:
            self.v = 1e-3 * np.ones((self.K, self.F))
        self.win = np.array([
            self.basis(i / float(self.dt), **self.basis_args)
            for i in xrange(data.shape[0])
        ])

        self.data = data  # orignal event features, shape: TxKxF
        # convolve data with windowed signal
        self.conv_data = np.concatenate([
            convolve(data[:, k, -1], self.win)[:, None]
            for k in xrange(data.shape[1])
        ],
                                        axis=1)
        self.conv_data_fea = f_mat  # convolved to feature matrix, shape: TxKxF
Пример #2
0
 def set_data(self, data, dyadic_data, ignore_feat=True):
     """
     :param dyadic_data: expect dyadic interaction data between processes, shape: KxKxT
     """
     assert isinstance(dyadic_data,
                       np.ndarray) and data.ndim == 3, "dyadic_data needs be a KxKxT tensor of interaction events"
     super(LinearDiscreteHawkes, self).set_data(data, ignore_feat)
     self.conv_dyad_data = dyadic_data
     # convolution step
     for k1 in xrange(self.conv_dyad_data.shape[0]):
         for k2 in xrange(self.conv_dyad_data.shape[1]):
             self.conv_dyad_data[k1, k2, :] = self.conv_dyad_data[k1, k2, :] + convolve(self.conv_dyad_data[k1, k2, :], self.win)
Пример #3
0
 def set_data(self, data, dyadic_data, ignore_feat=True):
     """
     :param dyadic_data: expect dyadic interaction data between processes, shape: KxKxT
     """
     assert isinstance(
         dyadic_data, np.ndarray
     ) and data.ndim == 3, "dyadic_data needs be a KxKxT tensor of interaction events"
     super(LinearDiscreteHawkes, self).set_data(data, ignore_feat)
     self.conv_dyad_data = dyadic_data
     # convolution step
     for k1 in xrange(self.conv_dyad_data.shape[0]):
         for k2 in xrange(self.conv_dyad_data.shape[1]):
             self.conv_dyad_data[
                 k1, k2, :] = self.conv_dyad_data[k1, k2, :] + convolve(
                     self.conv_dyad_data[k1, k2, :], self.win)
Пример #4
0
    def set_data(self, data, ignore_feat=True):
        """
        :param data: a TxKxV tensor of event-feature map where T- time; K- process id; V- corresponding feature vector
        :input feature: V+1 features, [V features, 1 bias], bias- denotes recency
        """
        assert isinstance(data, np.ndarray) and data.ndim == 3, "data needs to be a TxKxV tensor of event features"
        self.update_K(data.shape[1])
        self.F = data.shape[2]-1
        # calculate linear mark function: F expected to be KxKxTxF tensor
        if self.F < 1 or ignore_feat:
            f_mat = None
            self.F = 0
        else:
            f_mat = data[:, :, :-1]
        if self.F > 0:
            self.v = 1e-3 * np.ones((self.K, self.F))
        self.win = np.array([self.basis(i/float(self.dt), **self.basis_args) for i in xrange(data.shape[0])])

        self.data = data  # orignal event features, shape: TxKxF
        # convolve data with windowed signal
        self.conv_data = np.concatenate([convolve(data[:, k, -1], self.win)[:, None] for k in xrange(data.shape[1])], axis=1)
        self.conv_data_fea = f_mat  # convolved to feature matrix, shape: TxKxF